Wind Tunnel Test of a Rotorcraft with Lift Compounding

2021 ◽  
Vol 66 (1) ◽  
pp. 1-16
Author(s):  
Andŕe Bauknecht ◽  
Xing Wang ◽  
Jan-Arun Faust ◽  
Inderjit Chopra

Rotorcraft flight speed is limited by compressibility effects on the advancing blade side and decreasing lift potential on the retreating blade side. It may thus be beneficial to employ a hingeless rotor to generate additional lift with the advancing blade and compensate the resulting rolling moment with a fixed wing on the retreating blade side. This concept is a form of "lift compounding" that appears to show enormous potential. The present paper presents results of a wind tunnel test with a slowed, hingeless rotor and single fixed wing on the retreating blade side. Based on rotor test stand data and flow field measurements, the impact of operational and rotor parameters on system performance and aerodynamics is examined, mutual interaction effects between rotor and fixed wing are analyzed, and dominant flow structures are characterized in the reverse flow region on the retreating blade side. Flow field analysis reveals a reverse flow entrance vortex that freely convects through the reverse flow region and rivals the blade tip vortices in strength. Contrary to previous beliefs, this vortex originates from upstream of the reverse flow region and only its detachment from the rotor blade is related to entering this region. The combination of finite rolling moment trim and aft shaft tilt significantly increases rotor lift coefficient and corresponding peak lift-to-drag ratio of the compound rotorcraft. Results are compared with predictions from a comprehensive rotor analysis that is expanded to cover the main effects of the added fixed wing and is able to reproduce general performance trends of the rotorcraft. The present study highlights that adding a single fixed wing and hingeless rotor to a high-speed rotorcraft could significantly improve its performance.

Author(s):  
Shashank Maurya ◽  
Xing Wang ◽  
Inderjit Chopra

A single main rotor helicopter's maximum forward speed is limited due to the compressibility effects on the advancing side and reverse flow and dynamic stall on the retreating side. Compound helicopters can address these issues with a slowed rotor and lift compounding. There is a scarcity of test data on compound helicopters, and the present research focuses on a systematic wind tunnel test on lift compounding. Slowing down the rotor increases the advance ratio and, hence, the reverse flow region, which does not produce much lift. The lift is augmented with a wing on the retreating side. A hingeless rotor hub helps to balance the rolling moment with lift offset. Wind tunnel tests were carried out on this configuration up to advance ratios of 0.7 at two different wing incidence angles. Rotor performance, controls, blade structural loads, and hub vibratory loads were measured and compared with in-house comprehensive analysis, UMARC. A comparison between different wing incidences at constant total lift provided many insights into the lift compounding. It increased the vehicle efficiency and reduced peak-to-peak lag bending moment and in-plane 4/rev hub vibratory loads. The only trade-off was steady rotor hub loads and rolling moment at the wing root carried by the fuselage.


2020 ◽  
Vol 65 (4) ◽  
pp. 1-14
Author(s):  
Xing Wang ◽  
Yong Su Jung ◽  
James Baeder ◽  
Inderjit Chopra

To expand the cruise speed of a compound helicopter, alleviating the compressibility effects on the advancing side with reduced rotor RPM is proved to be an effective design feature, which results in high advance ratio flight regime. To investigate the aerodynamic phenomena at high advance ratios and provide data for the validation of analytical tools, a series of wind tunnel tests were conducted progressively in the Glenn L. Martin Wind Tunnel with a 33.5-inch radius fourbladed articulated rotor. In a recent wind tunnel test, the rotor blades were instrumented with pressure sensors and strain gauges at 30% radius, and pressure data were acquired to calculate the sectional airloads by surface integration up to an advance ratio of 0.8. The experimental results of rotor performance, control angles, blade airloads, and structural loads were compared with the predictions of comprehensive analysis and computational fluid dynamics (CFD) analysis coupled with computational structural dynamics (CSD) structural model. The paper focuses on the data correlation between experimental pressure, airload, and structural load data and the CFD/CSD predicted results at various collective and shaft tilt angles. Overall, the data correlation was found satisfactory, and the study provided some insights into the aerodynamic mechanisms that affect the rotor airload and performance, in particular the mechanisms of backward shaft tilt, the effect of hub/shaft wake, and the formation of dynamic stall in the reverse flow region.


2021 ◽  
Author(s):  
Johannes Janssen ◽  
Daniel Pohl ◽  
Peter Jeschke ◽  
Alexander Halcoussis ◽  
Rainer Hain ◽  
...  

Abstract This paper presents the impact of an axially tilted variable stator vane platform on penny cavity flow and passage flow, with the aid of both optical and pneumatic measurements in an annular cascade wind tunnel as well as steady CFD analyses. Variable stator vanes (VSVs) in axial compressors require a clearance from the endwalls. This means that penny cavities around the vane platform are inevitable. Production and assembly deviations can result in a vane platform which is tilted about the circumferential axis. Due to this deformation, backward facing steps occur on the platform edge. Penny cavity and main flow in geometries with and without platform tilting were compared in an annular cascade wind tunnel, which comprises a single row of 30 VSVs. Detailed particle image velocimetry (PIV) measurements were conducted inside the penny cavity and in the vane passage. Steady pressure and velocity data was obtained by two-dimensional multi-hole pressure probe traverses in the inflow and the outflow. Furthermore, pneumatic measurements were carried out using pressure taps inside the penny cavity. Additionally, oil flow visualization was conducted on the airfoil, hub, and penny cavity surfaces. Steady CFD simulations with boundary conditions, according to the measurements, have been benchmarked against experimental data. The results show that tilting the VSV platform reduces the mass flow into and out of the penny cavity. By decreasing penny cavity leakage, platform tilting also affects the passage flow where it leads to a reduced turbulence level and total pressure loss in the leakage flow region. In summary, the paper demonstrates the influence of penny platform tilting on cavity flow and passage flow and provides new insights into the mechanisms of penny cavity-associated losses.


1999 ◽  
Vol 122 (1) ◽  
pp. 51-56 ◽  
Author(s):  
Riccardo Tresso ◽  
David R. Munoz

Detailed grid generated turbulent analysis has been completed using a three-dimensional hot-wire anemometer and traversing mechanism to identify a homogeneous, isotropic flow region downstream of a square mesh. The three-dimensional fluctuating velocity measurements were recorded along the centerline of a wind tunnel test section and spatially over the entire wind tunnel cross section downstream of the square mesh. Turbulent intensities for various grid sizes and Reynolds numbers ranged from a minimum of 0.2 percent to a maximum of 2.2 percent in each of the three principal velocity directions. Spatial homogeneity and isotropy were determined for several turbulent flow conditions and downstream positions using the method of covariances. Covariances, in theory, should approach zero asymptotically; however, in practice, this was not achievable. A subjective judgment is required to determine downstream location where the variance of the three covariances reaches a value close to zero. The average standard deviation provides an estimate for defining the limit or subjective threshold needed to determine the onset of homogeneous, isotropic flow. Implementing this threshold, a quantitative method was developed for predicting the streamwise location for the onset of the homogeneous, isotropic flow region downstream of a 25.4 mm square grid as a function of Reynolds number. A comparison of skewness, determined from one-dimensional hot wire anemometer measurements, and covariances, determined from three dimensional hot wire anemometer measurements, indicates a need for caution when relying solely on one-dimensional measurements for determination of turbulence isotropy. The comprehensive three-dimensional characterization also provides an improved understanding of spatial distribution of fundamental turbulence quantities generated by the grid within a low-speed wind tunnel. [S0098-2202(00)02501-3]


2020 ◽  
Vol 65 (1) ◽  
pp. 1-13
Author(s):  
Xing Wang ◽  
Lauren Trollinger ◽  
Inderjit Chopra

Owing to its ability to alleviate the compressibility effect on the advancing side, the slowed rotor operating at high advance ratios is a key feature in high-speed compound rotorcraft. A series of wind tunnel tests were conducted in the Glenn L. Martin Wind Tunnel with a four-bladed Mach-scaled articulated rotor. The objective of the tests was to gain a basic understanding of unique features of high-advance-ratio aerodynamic phenomena, such as thrust reversal and dynamic stall in the reverse flow region. In this study, high-advance-ratio tests were carried out with highly similar, noninstrumented blades and on-hub control angle measurements, to minimize possible error due to blade structural dissimilarity and pitch angle discrepancy. The tests were conducted at 900 and 1200 RPM, advance ratios of 0.3–0.9, and a shaft tilt study was conducted at±4°. Pitch and flap motion at the blade roots, rotor performance, and vibratory hub loads were investigated during the test. The test data were then compared with those of previous tests and with predictions from comprehensive analysis. The airload results were investigated using comprehensive analysis to gain insights into the influences of advance ratio and shaft tilt angle on rotor performance and hub vibratory loads. Results indicate that the thrust benefit from backward shaft tilt is dependent on the change in the inflow condition and the induced angle of attack increment, and the reverse flow region at high advance ratios is the major contributor to changes in shaft torque and horizontal force.


1996 ◽  
Vol 118 (4) ◽  
pp. 217-221 ◽  
Author(s):  
D. M. Somers ◽  
J. L. Tangler

The objective of this wind-tunnel test was to verify the predictions of the Eppler Airfoil Design and Analysis Code for a very thick airfoil having a high maximum lift coefficient designed to be largely insensitive to leading-edge roughness effects. The 24 percent thick S814 airfoil was designed with these characteristics to accommodate aerodynamic and structural considerations for the root region of a wind-turbine blade. In addition, the airfoil’s maximum lift-to-drag ratio was designed to occur at a high lift coefficient. To accomplish the objective, a two-dimensional wind tunnel test of the S814 thick root airfoil was conducted in January 1994 in the low-turbulence wind tunnel of the Delft University of Technology Low Speed Laboratory, The Netherlands. Data were obtained with transition free and transition fixed for Reynolds numbers of 0.7, 1.0, 1.5, 2.0, and 3.0 × 106. For the design Reynolds number of 1.5 × 106, the maximum lift coefficient with transition free is 1.32, which satisfies the design specification. However, this value is significantly lower than the predicted maximum lift coefficient of almost 1.6. With transition fixed at the leading edge, the maximum lift coefficient is 1.22. The small difference in maximum lift coefficient between the transition-free and transition-fixed conditions demonstrates the airfoil’s minimal sensitivity to roughness effects. The S814 root airfoil was designed to complement existing NREL low maximum-lift-coefficient tip-region airfoils for rotor blades 10 to 15 meters in length.


Author(s):  
Daniel Barcarolo ◽  
Yann Andrillon ◽  
Erwan Jacquin ◽  
Alain Ledoux

The accurate evaluation of wind loads applied on floating offshore structures is extremely important as they are in specific conditions one of the dimensioning criteria for the mooring design. Nowadays these loads are mainly assessed through wind tunnel tests performed at model scale. Estimating realistic wind loads however, remains a big challenge. The complexity and associated simplification level of FPSO topside structures, the scale effects and the establishment of the atmospheric boundary layer imply that many simplifications are to be made. Typically, the FPSO topside is greatly simplified and equivalent blocs of wired frame are used. Today with the evolution of CFD software, and the increase of the meshing capacity, new scopes open to CFD. Aerodynamic simulations on complex FPSO structures are therefore now possible, but need specific developments and validations that are presented in this paper. The main objective of the work presented is to investigate the ability of CFD to evaluate wind loads on complex FPSOs topsides and to provide information on the impact of model simplifications made in wind tunnels. In a first stage, the numerical model was intensively validated by comparing its results to a wind tunnel test case. The numerical model was developed in order to ensure the quality of the results and enable a relevant comparison that was obtained with grids density up to 30 million cells. For this purpose, the geometric model used corresponds to the one used in wind tunnel. The same Atmospheric Boundary Layer was simulated and a thorough effort was performed to ensure the mesh convergence. In a second stage, more physical aspects of the wind tunnel methodology were investigated. Typically the accuracy of the blockage effect correction was evaluated by performing computations with and without blockage, and results were compared with classical corrections applied in wind tunnel. The impacts of the Atmospheric Boundary Layer on wind loads have also been investigated. Finally, the wind load contribution of each component of the FPSO was evaluated.


2013 ◽  
Vol 860-863 ◽  
pp. 1703-1709 ◽  
Author(s):  
Xian Jun Hou ◽  
Shu Chen ◽  
Zhi'en Liu

A calculation model of turbocharged diesel engine was developed based on one-dimension simulation software GT-power,which can provide a steady boundary condition for the flow field analysis of EGR system.The three-dimension simulation software Fluent was applied in establishing the flow field model of the air-intake system under different air inlet position to analize the distribution of the exhaust gas,and then obtained the impact of the EGRs air-inlet position to uniformity of EGR system, thereby we could acquire the parameters which achieves the best maching between the EGR system and the diesel engine, it also provided a reference for engine performance optimization.


Author(s):  
O. Eisele ◽  
G. Pechlivanoglou ◽  
C. N. Nayeri ◽  
C. O. Paschereit

Wind turbine blade design is currently based on the combination of a plurality of airfoil sections along the rotorblade span. The two-dimensional airfoil characteristics are usually measured with wind tunnel experiments or computed by means of numerical simulation codes. The general airfoil input for the calculation of the rotorblade power characteristics as well as the subsequent aerodynamic and aeroelastic loads are based on these two-dimensional airfoil characteristics. In this paper, the effects of inflow turbulence and wind tunnel test measurement deviations are investigated and discussed, to allow considerations of such effects in the rotorblade design process. The results of CFD simulations with various turbulence models are utilized in combination with wind tunnel measurements in order to assess the impact of such discrepancies. It seems that turbulence, airfoil surface roughness and early transition effects are able to contribute significantly to the uncertainty and scattering of measurements. Various wind tunnel facilities generate different performance characteristic curves, while grid-generated turbulence is generally not included in the wind tunnel measurements during airfoil characterization. Furthermore the correlation of grid-generated wind tunnel turbulence with the atmospheric turbulence time and length scales is not easily achieved. All the aforementioned uncertainties can increase the performance scattering of current wind turbine blade designs as well as the generated aeroelastic loads. A brief assessment of the effect of such uncertainties on wind turbine performance is given at the last part of this work by means of BEM simulations on a wind turbine blade.


Author(s):  
Xifeng Wang ◽  
Kenta Mizushiri ◽  
Hiroshi Yokoyama ◽  
Akiyoshi Iida

Abstract In order to evaluate the interior noise caused by the flow around automobiles, it is necessary to clarify the nature of the pressure fluctuations on the surface of vehicle body. The pressure fluctuations around the vehicle which are caused by the fluid motion can be solved by unsteady-compressible Navier-Stokes equation. However, the differences between the scales and intensity of the pressure fluctuations related to the hydrodynamic pressure fluctuation (HPF) of the flow field and the aerodynamic sound (acoustic pressure fluctuation APF) are quite large, these phenomena can be considered separately as two different phenomena. This assumption can help us to understand the contributions of these two components of pressure fluctuations to the structural vibration and interior sound of automobiles. Since both the HPF and the APF are pressure fluctuations, they cannot be separated only by measuring with a single pressure sensor. In this study, we divided these pressure fluctuations by using wavenumber-frequency spectrum analysis. Wind tunnel experiment showed that the HPF and the APF have different wavenumber fields in the wake of a rear-view mirror, and the intensity and wavenumber of the HPF are larger than that of the APF. Flow field was also investigated by using the incompressible flow simulation. As a result of wavenumber-frequency spectrum analysis based on the pressure fields around the vehicle body, the HPF and the APF have different wavenumbers in the case of a boundary layer flow field with no separation such as boundary layer on the vehicle roof. On the other hand, very small wavenumber components of the HPF were observed in the recirculation flow around the rear-view mirror downstream, despite incompressible simulation was done. This is probably due to the flow fields excite the vehicle body in the direction close to the vertical with respect to the vehicle body surface (side shield) in the separated flow region, and the wavenumber vector project on the shield surface apparently become smaller. The wavenumber vector becomes short but the frequency is constant, which leads the speed of pressure propagation apparently increases. In the reverse flow region, even if the uniform flow velocity is smaller than the speed of sound, the HPF may still contribute to vibration and sound generation. At the same time, since the flow velocity is actually slowed in the reverse flow region, large wavenumber components were also observed. Therefore, the wavenumber spectrum was observed in a wide range of the wavelength region. In conclusion, by investigating the wavenumber frequency spectrum, it is possible to estimate the flow field contributing to the interior noise of automobiles.


Sign in / Sign up

Export Citation Format

Share Document