scholarly journals Inflammation in Cardiovascular Tissue Engineering: The Challenge to a Promise: A Minireview

2011 ◽  
Vol 2011 ◽  
pp. 1-11 ◽  
Author(s):  
Agneta Simionescu ◽  
Jason B. Schulte ◽  
George Fercana ◽  
Dan T. Simionescu

Tissue engineering employs scaffolds, cells, and stimuli brought together in such a way as to mimic the functional architecture of the target tissue or organ. Exhilarating advances in tissue engineering and regenerative medicine allow us to envisionin vitrocreation orin vivoregeneration of cardiovascular tissues. Such accomplishments have the potential to revolutionize medicine and greatly improve our standard of life. However, enthusiasm has been hampered in recent years because of abnormal reactions at the implant-host interface, including cell proliferation, fibrosis, calcification and degeneration, as compared to the highly desired healing and remodeling. Animal and clinical studies have highlighted uncontrolled chronic inflammation as the main cause of these processes. In this minireview, we present three case studies highlighting the importance of inflammation in tissue engineering heart valves, vascular grafts, and myocardium and propose to focus on the endothelial barrier, the “final frontier” endowed with the natural potential and ability to regulate inflammatory signals.

Physiology ◽  
2016 ◽  
Vol 31 (1) ◽  
pp. 7-15 ◽  
Author(s):  
Cameron Best ◽  
Ekene Onwuka ◽  
Victoria Pepper ◽  
Malik Sams ◽  
Jake Breuer ◽  
...  

Advancements in biomaterial science and available cell sources have spurred the translation of tissue-engineering technology to the bedside, addressing the pressing clinical demands for replacement cardiovascular tissues. Here, the in vivo status of tissue-engineered blood vessels, heart valves, and myocardium is briefly reviewed, illustrating progress toward a tissue-engineered heart for clinical use.


Circulation ◽  
2000 ◽  
Vol 102 (suppl_3) ◽  
Author(s):  
Gustav Steinhoff ◽  
Ulrich Stock ◽  
Najibulla Karim ◽  
Heike Mertsching ◽  
Adine Timke ◽  
...  

Background —Tissue engineering using in vitro–cultivated autologous vascular wall cells is a new approach to biological heart valve replacement. In the present study, we analyzed a new concept to process allogenic acellular matrix scaffolds of pulmonary heart valves after in vitro seeding with the use of autologous cells in a sheep model. Methods and Results —Allogenic heart valve conduits were acellularized by a 48-hour trypsin/EDTA incubation to extract endothelial cells and myofibroblasts. The acellularization procedure resulted in an almost complete removal of cells. After that procedure, a static reseeding of the upper surface of the valve was performed sequentially with autologous myofibroblasts for 6 days and endothelial cells for 2 days, resulting in a patchy cellular restitution on the valve surface. The in vivo function was tested in a sheep model of orthotopic pulmonary valve conduit transplantation. Three of 4 unseeded control valves and 5 of 6 tissue-engineered valves showed normal function up to 3 months. Unseeded allogenic acellular control valves showed partial degeneration (2 of 4 valves) and no interstitial valve tissue reconstitution. Tissue-engineered valves showed complete histological restitution of valve tissue and confluent endothelial surface coverage in all cases. Immunohistological analysis revealed cellular reconstitution of endothelial cells (von Willebrand factor), myofibroblasts (α-actin), and matrix synthesis (procollagen I). There were histological signs of inflammatory reactions to subvalvar muscle leading to calcifications, but these were not found in valve and pulmonary artery tissue. Conclusions —The in vitro tissue-engineering approach using acellular matrix conduits leads to the in vivo reconstitution of viable heart valve tissue.


2018 ◽  
Vol 15 (148) ◽  
pp. 20180359 ◽  
Author(s):  
M. A. J. van Kelle ◽  
P. J. A. Oomen ◽  
W. J. T. Janssen-van den Broek ◽  
R. G. P. Lopata ◽  
S. Loerakker ◽  
...  

In situ cardiovascular tissue-engineering can potentially address the shortcomings of the current replacement therapies, in particular, their inability to grow and remodel. In native tissues, it is widely accepted that physiological growth and remodelling occur to maintain a homeostatic mechanical state to conserve its function, regardless of changes in the mechanical environment. A similar homeostatic state should be reached for tissue-engineered (TE) prostheses to ensure proper functioning. For in situ tissue-engineering approaches obtaining such a state greatly relies on the initial scaffold design parameters. In this study, it is investigated if the simple scaffold design parameter initial thickness, influences the emergence of a mechanical and geometrical equilibrium state in in vitro TE constructs, which resemble thin cardiovascular tissues such as heart valves and arteries. Towards this end, two sample groups with different initial thicknesses of myofibroblast-seeded polycaprolactone-bisurea constructs were cultured for three weeks under dynamic loading conditions, while tracking geometrical and mechanical changes temporally using non-destructive ultrasound imaging. A mechanical equilibrium was reached in both groups, although at different magnitudes of the investigated mechanical quantities. Interestingly, a geometrically stable state was only established in the thicker constructs, while the thinner constructs’ length continuously increased. This demonstrates that reaching geometrical and mechanical stability in TE constructs is highly dependent on functional scaffold design.


2021 ◽  
Vol 31 (3) ◽  
pp. 501-510
Author(s):  
Dan SIMIONESCU ◽  
◽  
Marius Mihai HARPA ◽  
Codrut OPRITA ◽  
Ionela MOVILEANU ◽  
...  

Well documented shortcomings of current heart valve substitutes – biological and mechanical prostheses make them imperfect choices for patients diagnosed with heart valve disease, in need for a cardiac valve replacement. Regenerative Medicine and Tissue Engineering represent the research grounds of the next generation of valvular prostheses – Tissue Engineering Heart Valves (TEHV). Mimicking the structure and function of the native valves, TEHVs are three dimensional structures obtained in laboratories encompassing scaffolds (natural and synthetic), cells (stem cells and differentiated cells) and bioreactors. The literature stipulates two major heart valve regeneration paradigms, differing in the manner of autologous cells repopulation of the scaffolds; in vitro, or in vivo, respectively. During the past two decades, multidisciplinary both in vitro and in vitro research work was performed and published. In vivo experience comprises preclinical tests in experimental animal model and cautious limited clinical translation in patients. Despite initial encouraging results, translation of their usage in large clinical scenarios represents the most important challenge that needs to be overcome. This review purpose is to outline the most remarkable preclinical and clinical results of TEHV evaluation along with the lessons learnt from all this experience.


2020 ◽  
Vol 48 (3) ◽  
pp. 755-764
Author(s):  
Benjamin B. Rothrauff ◽  
Rocky S. Tuan

Bone possesses an intrinsic regenerative capacity, which can be compromised by aging, disease, trauma, and iatrogenesis (e.g. tumor resection, pharmacological). At present, autografts and allografts are the principal biological treatments available to replace large bone segments, but both entail several limitations that reduce wider use and consistent success. The use of decellularized extracellular matrices (ECM), often derived from xenogeneic sources, has been shown to favorably influence the immune response to injury and promote site-appropriate tissue regeneration. Decellularized bone ECM (dbECM), utilized in several forms — whole organ, particles, hydrogels — has shown promise in both in vitro and in vivo animal studies to promote osteogenic differentiation of stem/progenitor cells and enhance bone regeneration. However, dbECM has yet to be investigated in clinical studies, which are needed to determine the relative efficacy of this emerging biomaterial as compared with established treatments. This mini-review highlights the recent exploration of dbECM as a biomaterial for skeletal tissue engineering and considers modifications on its future use to more consistently promote bone regeneration.


2004 ◽  
Vol 83 (02) ◽  
Author(s):  
A Haisch ◽  
A Evers ◽  
K Jöhrens-Leder ◽  
S Jovanovic ◽  
B Sedlmaier ◽  
...  
Keyword(s):  

2020 ◽  
Vol 27 (10) ◽  
pp. 1634-1646 ◽  
Author(s):  
Huey-Shan Hung ◽  
Shan-hui Hsu

Treatment of cardiovascular disease has achieved great success using artificial implants, particularly synthetic-polymer made grafts. However, thrombus formation and restenosis are the current clinical problems need to be conquered. New biomaterials, modifying the surface of synthetic vascular grafts, have been created to improve long-term patency for the better hemocompatibility. The vascular biomaterials can be fabricated from synthetic or natural polymers for vascular tissue engineering. Stem cells can be seeded by different techniques into tissue-engineered vascular grafts in vitro and implanted in vivo to repair the vascular tissues. To overcome the thrombogenesis and promote the endothelialization effect, vascular biomaterials employing nanotopography are more bio-mimic to the native tissue made and have been engineered by various approaches such as prepared as a simple surface coating on the vascular biomaterials. It has now become an important and interesting field to find novel approaches to better endothelization of vascular biomaterials. In this article, we focus to review the techniques with better potential improving endothelization and summarize for vascular biomaterial application. This review article will enable the development of biomaterials with a high degree of originality, innovative research on novel techniques for surface fabrication for vascular biomaterials application.


2021 ◽  
Vol 8 (3) ◽  
pp. 39
Author(s):  
Britani N. Blackstone ◽  
Summer C. Gallentine ◽  
Heather M. Powell

Collagen is a key component of the extracellular matrix (ECM) in organs and tissues throughout the body and is used for many tissue engineering applications. Electrospinning of collagen can produce scaffolds in a wide variety of shapes, fiber diameters and porosities to match that of the native ECM. This systematic review aims to pool data from available manuscripts on electrospun collagen and tissue engineering to provide insight into the connection between source material, solvent, crosslinking method and functional outcomes. D-banding was most often observed in electrospun collagen formed using collagen type I isolated from calfskin, often isolated within the laboratory, with short solution solubilization times. All physical and chemical methods of crosslinking utilized imparted resistance to degradation and increased strength. Cytotoxicity was observed at high concentrations of crosslinking agents and when abbreviated rinsing protocols were utilized. Collagen and collagen-based scaffolds were capable of forming engineered tissues in vitro and in vivo with high similarity to the native structures.


Sign in / Sign up

Export Citation Format

Share Document