scholarly journals Effects of zinc fertilizer rate and application method on photosynthetic characteristics and grain yield of summer maize

Author(s):  
H Liu ◽  
W Gan ◽  
Z Rengel ◽  
P Zhao
2014 ◽  
Vol 94 (8) ◽  
pp. 1449-1459 ◽  
Author(s):  
T.-N. Liu ◽  
L.-M. Gu ◽  
C.-L. Xu ◽  
S.-T. Dong

Liu, T.-N., Gu, L.-M., Xu, C.-L. and Dong, S.-T. 2014. Responses of group and individual leaf photosynthetic characteristics of two summer maize (Zea mays L.) to leaf removal under high plant density. Can. J. Plant Sci. 94: 1449–1459. The present experiment was conducted during the growing seasons of 2012 and 2013 using two summer maize (Zea mays L.) cultivars, Zhengdan958 (a compact cultivar) and Jinhai5 (a semi-compact cultivar) grown at a plant density of 105 000 plants ha−1, to evaluate the influence of leaf removal on canopy apparent photosynthesis (CAP), individual leaf photosynthetic characteristics and grain yield. Plants were subjected to the removal of two (S1), four (S2) or six leaves (S3) from the top of the plant 3 d after anthesis (DAA), with no leaf removal as control (S0). The results of 2 yr indicated that with increased intensity of leaf removal, the transmission of light to lower strata of the canopy increased. With the removal of two leaves (S1), CAP increased and longer durations of CAP and green leaf are index were maintained during grain filling, whereas CAP in S2 and S3 treatments was inhibited and drastically declined. Generally, leaf removal appeared to stimulate an increase in the net photosynthetic rate (PN), stomatal conductance (gs) and chlorophyll content of the remaining ear leaves in S2 and S3 treatments prior to 26 DAA. Nevertheless, thereafter, plants in the S1 treatment had an advantage in terms of individual photosynthetic capacity. These results indicate that excising two leaves made plants more tolerant of high plant density due to enhanced photosynthetic capacity in ear leaves as well as a more efficient canopy structure, resulting in a better coordination of groups and individuals, and finally achieved significantly higher grain yield. In addition, relative to Zhengdan958, the effects of leaf removal on Jinhai5 were more apparent.


2019 ◽  
Vol 18 (10) ◽  
pp. 2219-2229 ◽  
Author(s):  
Yan-hong LI ◽  
De-yang SHI ◽  
Guang-hao LI ◽  
Bin ZHAO ◽  
Ji-wang ZHANG ◽  
...  

2015 ◽  
Vol 154 (4) ◽  
pp. 584-597 ◽  
Author(s):  
J. X. GUO ◽  
X. M. FENG ◽  
X. Y. HU ◽  
G. L. TIAN ◽  
N. LING ◽  
...  

SUMMARYRice (Oryza sativa L.) is one of the most important cereal crops in the world and a potentially important source of zinc (Zn) in the diet. The improvement of Zn content of rice is a global challenge with implications for both rice production and human health. The objective of the present study was to identify the effects of nitrogen (N) fertilizer rates and Zn application methods on Zn content of rice by evaluating rice production on native soils with different Zn availabilities in 2010/11. The results indicated that Zn application increased rice grain yield and Zn content in grains compared with the control; however, this effect was also affected by the native soil Zn availability, N fertilizer rate and Zn fertilizer application method. The native soil Zn status was the dominant factor influencing grain yield and grain Zn content in response to Zn fertilizer application. Grain Zn content ranged from 19·74 to 26·93 mg/kg under the different Zn statuses. The results also indicated that Zn application method has a significant influence on grain yield. Application of Zn fertilizer to the soil was more effective than the foliar spray on rice grain yield; however, the foliar spray resulted in a greater increase in grain Zn content when compared with soil application. Grain Zn content was affected by application method and displayed the following general trend: soil application + foliar spray > foliar spray > soil application. The experiments investigating the effect of N fertilizer rate combined with Zn application method showed a clear increase in both grain yield and Zn content as the N fertilizer level increased from 200 to 300 kg/ha. In addition, the results also indicated that N content and accumulation increased in all plant tissues, which suggests that Zn application might influence the uptake and translocation of N in rice plants. These results suggest that soil application in addition to a foliar spray of Zn should be considered as an important strategy to increase grain yield and grain Zn content of rice grown in soils with low background levels of Zn-associated diethylene triamine pentaacetate acid. Moreover, this process could be further strengthened by a high N application rate. In conclusion, these results demonstrate the potential of optimizing nutrient management using Zn fertilizer to obtain higher grain yields and higher grain Zn content in fields with low native Zn status.


Water ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 1640 ◽  
Author(s):  
Li-Li Zhao ◽  
Lu-Sheng Li ◽  
Huan-Jie Cai ◽  
Xiao-Hu Shi ◽  
Chao Zhang

Organic amendments improve general soil conditions and stabilize crop production, but their effects on the soil hydrothermal regime, root distribution, and their contributions to water productivity (WP) of maize have not been fully studied. A two-year field experiment was conducted to investigate the impacts of organic amendments on soil temperature, water storage depletion (SWSD), root distribution, grain yield, and the WP of summer maize (Zea mays L.) in the Guanzhong Plain of Northwest China. The control treatment (CO) applied mineral fertilizer without amendments, and the three amended treatments applied mineral fertilizer with 20 Mg ha−1 of wheat straw (MWS), farmyard manure (MFM), and bioorganic fertilizer (MBF), respectively. Organic amendments decreased SWSD compared to CO, and the lowest value was obtained in MBF, followed by MWS and MFM. Meanwhile, the lowest mean topsoil (0–10 cm) temperature was registered in MWS. Compared to CO, organic amendments generally improved the root length density (RLD) and root weight density (RWD) of maize. MBF showed the highest RLD across the whole soil profile, while MWS yielded the greatest RWD to 20 cm soil depth. Consequently, organic amendments increased grain yield by 9.9–40.3% and WP by 8.6–47.1% compared to CO, and the best performance was attained in MWS and MBF. We suggest that MWS and MBF can benefit the maize agriculture in semi-arid regions for higher yield, and WP through regulating soil hydrothermal conditions and improving root growth.


2018 ◽  
Vol 98 (3) ◽  
pp. 683-702 ◽  
Author(s):  
B.L. Beres ◽  
R.J. Graf ◽  
R.B. Irvine ◽  
J.T. O’Donovan ◽  
K.N. Harker ◽  
...  

To address knowledge gaps around enhanced efficiency urea fertilizer efficacy for nitrogen (N) management, a study was designed to improve integrated nutrient management systems for western Canadian winter wheat producers. Three factors were included in Experiment 1: (i) urea type [urea, urea + urease inhibitor—Agrotain®; urea + urease and nitrification inhibitor—SuperU®, polymer-coated urea—Environmentally Smart Nitrogen® (ESN®), and urea ammonium nitrate (UAN)], (ii) application method (side-band vs. spring-broadcast vs. 50% side-band: 50% spring-broadcast), and (iii) cultivar (AC Radiant hard red winter wheat vs. CDC Ptarmigan soft white winter wheat). The Agrotain® and CDC Ptarmigan treatments were removed in Experiment 2 to allow for additional application methods: (i) fall side-band, (ii) 50% side-band — 50% late fall broadcast, (iii) 50% side-band — 50% early spring broadcast, (iv) 50% side-band — 50% mid-spring broadcast, and (v) 50% side-band — 50% late spring broadcast. CDC Ptarmigan produced superior grain yield and N utilization over AC Radiant. Grain yield and protein content were influenced by N form and application method. Split applications of N usually provided the maximum yield and protein, particularly with Agrotain® or SuperU®. An exception to the poor fall-application results was the SuperU® treatments, which produced similar yield to the highest-yielding treatments. The results suggest that split applications of N might be most efficient for yield and protein optimization when combined with an enhanced efficiency urea product, particularly with urease or urease + nitrification inhibitors, and if the majority of N is applied in spring.


2018 ◽  
Vol 219 ◽  
pp. 242-249 ◽  
Author(s):  
Tiening Liu ◽  
Junzhi Chen ◽  
Ziyu Wang ◽  
Xiaorong Wu ◽  
Xiaochun Wu ◽  
...  

2020 ◽  
Vol 722 ◽  
pp. 137851 ◽  
Author(s):  
Kamaljit Banger ◽  
Claudia Wagner-Riddle ◽  
Brian B. Grant ◽  
Ward N. Smith ◽  
Craig Drury ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document