scholarly journals Investigation of the Lead-free Solder Joint Shear Performance

2007 ◽  
Vol 4 (2) ◽  
pp. 72-77 ◽  
Author(s):  
James Webster ◽  
Jianbiao Pan ◽  
Brian J. Toleno

Reflow profile has significant impact on solder joint performance because it influences wetting and microstructure of the solder joint. The purpose of this study is to investigate the effects of reflow profile and thermal shock on the shear performance of eutectic SnPb (SnPb) and Sn3.0Ag0.5Cu (SAC305) solder joints. Test boards were assembled with four different sized surface mount chip resistors (1206, 0805, 0603 and 0402). Nine reflow profiles for SAC 305 and nine reflow profiles for SnPb were developed with three levels of peak temperature (12°C, 22°C, and 32°C above solder liquidus temperature, or 230°C, 240°C, and 250°C for SAC 305; and 195°C, 205°C, and 215°C for SnPb) and three levels of time above solder liquidus temperature (30 sec., 60 sec., and 90 sec.). Half of the test vehicles were then subjected to air-to-air thermal shock conditioning from −40 to 125°C. The shear force data were analyzed using the Analysis of Variance (ANOVA). The fracture surfaces were studied using a Scanning Electron Microscopy (SEM) with Energy Dispersive Spectroscopy (EDS). It was found that thermal shock degraded both SnPb and SnAgCu joints shear strength, and that the effect of thermal shock on solder joint shear strength is much more significant than that of reflow profile. The SnAgCu solder joints have weaker shear strength than the SnPb solders. The SnAgCu solder joint after thermal shock retains more of its shear strength than that of SnPb for small components and vice versa for larger components.

2006 ◽  
Vol 18 (4) ◽  
pp. 48-56 ◽  
Author(s):  
Jianbiao Pan ◽  
Brian J. Toleno ◽  
Tzu‐Chien Chou ◽  
Wesley J. Dee

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Guisheng Gan ◽  
Donghua Yang ◽  
Yi-ping Wu ◽  
Xin Liu ◽  
Pengfei Sun ◽  
...  

Purpose The impact strength of solder joint under high strain rate was evaluated by board level test method. However, the impact shear test of single solder bump was more convenient and economical than the board level test method. With the miniaturization of solder joints, solder joints were more prone to failure under thermal shock and more attention has been paid to the impact reliability of solder joint. But Pb-free solder joints may be paid too much attention and Sn-Pb solder joints may be ignored. Design/methodology/approach In this study, thermal shock test between −55°C and 125°C was conducted on Sn-37Pb solder bumps in the BGA package to investigate microstructural evolution and growth mechanism of interfacial intermetallic compounds (IMCs) layer. The effects of thermal shock and ball diameter on the mechanical property and fracture behavior of Sn-37Pb solder bumps were discussed. Findings With the increase of ball size, the same change tendency of shear strength with thermal shock cycles. The shear strength of the solder bumps was the highest after reflow; with the increase of the number of thermal shocks, the shear strength of the solder bumps was decreased. But at the time of 2,000 cycles, the shear strength was increased to the initial strength. Minimum shear strength almost took place at 1,500 cycles in all solder bumps. The differences between maximum shear strength and minimum shear strength were 9.11 MPa and 16.83 MPa, 17.07 MPa and 15.59 MPa in φ0.3 mm and φ0.4 mm, φ0.5 mm and φ0.6 mm, respectively, differences were increased with increasing of ball size. With similar reflow profile, the thickness of IMC decreased as the diameter of the ball increased. The thickness of IMC was 2.42 µm and 2.17 µm, 1.63 µm and 1.77 µm with increasing of the ball size, respectively. Originality/value Pb-free solder was gradually used to replace traditional Sn-Pb solder and has been widely used in industry. Nevertheless, some products inevitably used a mixture of Sn-Pb and Pb-free solder to make the transition from Sn-Pb to Pb-free solder. Therefore, it was very important to understand the reliability of Sn-Pb solder joint and more further research works were also needed.


2015 ◽  
Vol 27 (1) ◽  
pp. 52-58 ◽  
Author(s):  
Peter K. Bernasko ◽  
Sabuj Mallik ◽  
G. Takyi

Purpose – The purpose of this paper is to study the effect of intermetallic compound (IMC) layer thickness on the shear strength of surface-mount component 1206 chip resistor solder joints. Design/methodology/approach – To evaluate the shear strength and IMC thickness of the 1206 chip resistor solder joints, the test vehicles were conventionally reflowed for 480 seconds at a peak temperature of 240°C at different isothermal ageing times of 100, 200 and 300 hours. A cross-sectional study was conducted on the reflowed and aged 1206 chip resistor solder joints. The shear strength of the solder joints aged at 100, 200 and 300 hours was measured using a shear tester (Dage-4000PXY bond tester). Findings – It was found that the growth of IMC layer thickness increases as the ageing time increases at a constant temperature of 175°C, which resulted in a reduction of solder joint strength due to its brittle nature. It was also found that the shear strength of the reflowed 1206 chip resistor solder joint was higher than the aged joints. Moreover, it was revealed that the shear strength of the 1206 resistor solder joints aged at 100, 200 and 300 hours was influenced by the ageing reaction times. The results also indicate that an increase in ageing time and temperature does not have much influence on the formation and growth of Kirkendall voids. Research limitations/implications – A proper correlation between shear strength and fracture mode is required. Practical implications – The IMC thickness can be used to predict the shear strength of the component/printed circuit board pad solder joint. Originality/value – The shear strength of the 1206 chip resistor solder joint is a function of ageing time and temperature (°C). Therefore, it is vital to consider the shear strength of the surface-mount chip component in high-temperature electronics.


2021 ◽  
Vol 18 (3) ◽  
pp. 137-144
Author(s):  
Dania Bani Hani ◽  
Raed Al Athamneh ◽  
Mohammed Aljarrah ◽  
Sa’d Hamasha

Abstract SAC-based alloys are one of the most common solder materials that are utilized to provide mechanical support and electrical connection between electronic components and the printed circuit board. Enhancing the mechanical properties of solder joints can improve the life of the components. One of the mechanical properties that define the solder joint structure integrity is the shear strength. The main objective of this study is to assess the shear strength behavior of SAC305 solder joints under different aging conditions. Instron 5948 Micromechanical Tester with a customized fixture is used to perform accelerated shear tests on individual solder joints. The shear strength of SAC305 solder joints with organic solderability preservative (OSP) surface finish is investigated at constant strain rate under different aging times (2, 10, 100, and 1,000 h) and different aging temperatures (50, 100, and 150°C). The nonaged solder joints are examined as well for comparison purposes. Analysis of variance (ANOVA) is accomplished to identify the contribution of each parameter on the shear strength. A general empirical model is developed to estimate the shear strength as a function of aging conditions using the Arrhenius term. Microstructure analysis is performed at different aging conditions using scanning electron microscope (SEM). The results revealed a significant reduction in the shear strength when the aging level is increased. An increase in the precipitates coarsening and intermetallic compound (IMC) layer thickness are observed with increased aging time and temperature.


2020 ◽  
Vol 37 (7) ◽  
pp. 2319-2336 ◽  
Author(s):  
Yasmin Murad ◽  
Haneen Abdel-Jabar ◽  
Amjad Diab ◽  
Husam Abu Hajar

Purpose The purpose of this study is to develop two empirical models that predict the shear strength of exterior beam-column joints exposed to monotonic and cyclic loading using Gene expression programming (GEP). Design/methodology/approach The GEP model developed for the monotonic loading case is trained and validated using 81 data test points and that for cyclic loading case is trained and validated using 159 data test points that collected from different 9 and 39 experimental programs, respectively. The parameters that are selected to develop the cyclic GEP model are concrete compressive strength, joint aspect ratio, column axial load and joint transverse reinforcement. The monotonic GEP model is developed using concrete compressive strength, column depth, joint width and column axial load. Findings GEP models are proposed in this paper to predict the joint shear strength of beam-column joints under cyclic and monotonic loading. The predicted results obtained using the GEP models are compared to those calculated using the ACI-352 code formulations. A sensitivity analysis is also performed to further validate the GEP models. Originality/value The proposed GEP models provide an accurate prediction for joint shear strength of beam-column joints under cyclic and monotonic loading that is more fitting to the experimental database than the ACI-352 predictions where the GEP models have higher R2 value than the code formulations.


2011 ◽  
Vol 1 (1) ◽  
Author(s):  
Jagadeesan Saravanan ◽  
Ganapathy Kumaran

AbstractAn assessment of the joint shear strength of exterior concrete beam-column joints reinforced internally with Glass Fibre Reinforced Polymer (GFRP) reinforcements under monotonically increasing load on beams keeping constant load on columns is carried out in this study. Totally eighteen numbers of specimens are cast and tested for different parametric conditions like beam longitudinal reinforcement ratio, concrete strength, column reinforcement ratio, joint aspect ratio and influence of the joint stirrups at the joint. Also finite element analysis is performed to simulate the behaviour of the beam-column joints under various parametric conditions. Based on this study, a modified design equation is proposed for assessing the joint shear strength of the GFRP reinforced beam-column specimens based on the experimental results and the review of the prevailing design equations.


Sign in / Sign up

Export Citation Format

Share Document