Cost Drivers for 2.5D and 3D Applications

2013 ◽  
Vol 2013 (DPC) ◽  
pp. 000334-000346
Author(s):  
Chet Palesko ◽  
E. Jan Vardaman ◽  
Alan Palesko

2.5D and 3D applications using through silicon vias (TSVs) are increasingly being considered as a packaging alternative. Miniaturization and high performance product requirements are driving this move – even though in many cases the cost of both 2.5D and 3D is still high. The primary applications for 2.5D interposers with TSVs are GPUs/CPUs, high-end ASICs, and FPGAs. Adoption for FPGAs has already started. The key to the performance gains in recently introduced FPGAs is the partitioning of an FPGA die into four “slices” that are mounted on a silicon interposer or what Xilinx calls its Stacked Silicon Interconnect technology. Applications for interposers include tablets, gaming, and high-end computing and network systems. The drivers are mainly partitioning large die, integrating single chips into a module, reducing die size where substrate density is the constraint, and using the interposer to minimize the stress on large die that are fabricated with extra-low-k (ELK) dielectrics. The primary applications for 3D solutions are stacked memory cubes and memory plus logic. The true 3D nature of stacking all active silicon allows better miniaturization, but yield issues can quickly drive the cost unacceptably high. This analysis examines the cost drivers for 2.5D and 3D applications. Activity based cost models will be used to analyze the complete cost of fabricating and assembling active die on a silicon interposer and active die stacking on other active die. Total product cost impact - not just the cost of a specific activity - is the focus of this analysis. Since yields play a major role in cost, a sensitivity analysis of the different yields including die yield before wafer probe, die yield after wafer probe, TSV yield, interposer yield, assembly yield, substrate yield, etc. will be presented. The critical yield points in the manufacturing flow and dominant activity cost drivers (equipment, material, and /or labor) will be presented as well as suggested minimum thresholds for 2.5D and 3D technology to be a cost effective technology.

2013 ◽  
Vol 2013 (1) ◽  
pp. 000429-000433
Author(s):  
Chet Palesko ◽  
Amy Palesko ◽  
E. Jan Vardaman

2.5D and 3D applications using through silicon vias (TSVs) are increasingly being considered as an alternative to conventional packaging. Miniaturization and high performance product requirements are driving this move, although in many cases the cost of both 2.5D and 3D is still high. In this paper we will identify the major cost drivers for 2.5D and 3D packaging and assess cost reduction progress, including current costs versus expected future costs. We will also compare these costs to alternative packaging.


2021 ◽  
Vol 9 (2) ◽  
pp. 24-30

Streptokinase is a fibrinolytic enzyme and a product of β-hemolytic Streptococci strains. This enzyme is used as a medication to break down clots in some cases of heart disease. Streptococcus equisimilis, a species of group C Streptococci, is widely used for the production of streptokinase by fermentation technology. In this study, the sugarcane bagasse fermentation medium was optimized for metal ions (KH2PO4, MgSO4.7H2O, CaCO3 and NaHCO3) at various levels to attain the maximal production of streptokinase. Sugarcane bagasse was used due to its profuse availability and as an ideal substrate for microbial processes for the manufacturing of value-added products. The results showed that maximal streptokinase production was found at 0.04% KH2PO4, 0.04% MgSO4.7H2O, 0.15% NaHCO3 and 0.04% CaCO3. Finally, the optimized medium resulted in 84.75 U/mg specific activity and 74.5% recovery. The purification process was carried out simultaneously using ammonium sulfate precipitation, ion-exchange chromatography, and gel filtration. Finally, a purified sample of streptokinase was run on SDS-PAGE and resolute 47 kDa molecular weight. The use of β-hemolytic Streptococci to obtain streptokinase is not free from health risks and is related to anaphylaxis. This study provides a way forward for the cost-effective ways to obtain streptokinase for the treatment of thrombosis.


Author(s):  
Lichia Yiu ◽  
Raymond Saner

Since the 1990s, more and more corporate learning has been moved online to allow for flexibility, just-in-time learning, and cost saving in delivering training. This trend has been evolved along with the introduction of Web-based applications for HRM purposes, known as electronic Human Resource Management (e-HRM). By 2005, 39.67% of the corporate learning, among the ASTD (American Society for Training and Development) benchmarking forum companies, was delivered online in comparison to 10.5% in 2001. E-learning has now reached “a high level of (technical) sophistication, both in terms of instructional development and the effective management of resources” in companies with high performance learning function (ASTD, 2006, p.4). The cost per unit, reported by ASTD in its 2006 State of Industry Report, has been declining since 2000 despite the higher training hours received per employee thanks to the use of technology based training delivery and its scalability. However, the overall quality of e-learning either public available in the market or implemented at the workplace remains unstable.


2007 ◽  
Vol 29-30 ◽  
pp. 127-130
Author(s):  
Colleen J. Bettles ◽  
Rimma Lapovok ◽  
H.P. Ng ◽  
Dacian Tomus ◽  
Barry C. Muddle

The range of commercial titanium alloys available is currently extremely restricted, with one alloy (Ti-6Al-4V), and derivatives of it, accounting for a very large proportion of all applications. High performance alloys are costly to fabricate and limited to low-volume applications that can sustain the cost. With the emergence of new processing technologies that promise to reduce significantly the cost of production of titanium metal, especially in powder form, there is an emerging imperative for cost-effective near net shape powder processing techniques to permit the benefit of reduced metal cost to be passed on to higher-volume applications. Equally, there is a need for the design and development of new alloys that are intrinsically low-cost and lend themselves to fabrication by novel cost-effective net shape processing. The approaches that might be used to select, design and process both conventional alloys and novel alloy systems will be reviewed, with a focus on innovation in design of low-cost alloys amenable to new processing paths and increasingly tolerant of variability in composition.


Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4925
Author(s):  
Ikkurthi Kanaka Durga ◽  
Kummara Venkata Guru Raghavendra ◽  
Naga Bhushanam Kundakarla ◽  
Suresh Alapati ◽  
Jin-Woo Ahn ◽  
...  

Nanocomposite electrodes receive much attention because of their excellent energy storage nature. Electrodes for supercapacitors have come a major source of interest. In this pursuit, the current work elucidates binder-free coral reefs resembling ZnO/CoS2 nanoarchitectures synthesized on the surface of Ni foams employing the cost-effective hydrothermal route. The Zno/CoS2 nanocomposite demonstrated excellent battery-type behavior, which can be employed for supercapcitor application. Various analyses were carried out in the current study, such as X-ray diffraction and high-resolution scanning electron microscopy, which allowed defining the crystalline nature and morphology of surface with ZnO/CoS2 nanoarchitectures. Electrochemical measures such as cyclic voltammetry, galvanostatic charge discharge, and potentiostatic impedance spectroscopy confirmed the battery-type behavior of the material. The synthesized precursors of binder-free ZnO/CoS2 nanostructures depicted an excellent specific capacity of 400.25 C·g−1 at 1 A·g−1, with a predominant cycling capacity of 88. 2% and retention holding of 68% at 10 A·g−1 and 2 A·g−1, even after 4000 cycles, representing an improvement compared to the pristine ZnO and CoS2 electroactive materials. Therefore, the electrochemical and morphological analyses suggest the excellent behavior of the ZnO/CoS2 nanoarchitectures, making them promising for supercapacitors.


2012 ◽  
Vol 2012 (1) ◽  
pp. 000012-000017
Author(s):  
Chet Palesko ◽  
Alan Palesko

Demands on the electronics industry for smaller, better, and cheaper packages have made the supply chain more complex. Outsourcing, new technologies, and increasing performance requirements make designing and building the right product for the right price more difficult than ever. We will present a framework for understanding and managing the supply chain through cost modeling. Cost models that accurately reflect the cost impact from technology and design decisions enable a more precise understanding of supply chain behavior. Cost models can show the extra cost of adding a layer, the expected savings from relaxing design rules, or the cost of package on package assembly compared to 3D packaging with through silicon vias (TSVs). The models also provide context to understanding the ″should cost″ of a product and the path to achieving it. Since the guidance from cost models is based on the actual supplier cost drivers and pricing behavior, designer cost reduction efforts will result in higher savings compared to not using the cost models. Without cost models, designers risk missing their suppliers' real cost drivers and, therefore, the opportunity to decrease cost. This cost modeling framework allows the designers to realize the lowest cost product by matching the right design with the right supplier. It is a method for understanding a design decision's cost impact: a design change, a supplier change, or even the impact of new technology.


2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Xueyan Liu ◽  
Dong Peng ◽  
Wei Guo ◽  
Xibo Ma ◽  
Xin Yang ◽  
...  

Photoacoustic imaging (PAI) has been employed to reconstruct endogenous optical contrast present in tissues. At the cost of longer calculations, a compressive sensing reconstruction scheme can achieve artifact-free imaging with fewer measurements. In this paper, an effective acceleration framework using the alternating direction method (ADM) was proposed for recovering images from limited-view and noisy observations. Results of the simulation demonstrated that the proposed algorithm could perform favorably in comparison to two recently introduced algorithms in computational efficiency and data fidelity. In particular, it ran considerably faster than these two methods. PAI with ADM can improve convergence speed with fewer ultrasonic transducers, enabling a high-performance and cost-effective PAI system for biomedical applications.


Micromachines ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 741
Author(s):  
Gilsang Yoon ◽  
Donghoon Kim ◽  
Iksoo Park ◽  
Bo Jin ◽  
Jeong-Soo Lee

We present the fabrication and electrical characteristics of nanonet-channel (NET) low-temperature polysilicon channel (LTPS) thin-film transistors (TFTs) using a nanosphere-assisted patterning (NAP) technique. The NAP technique is introduced to form a nanonet-channel instead of the electron beam lithography (EBL) or conventional photolithography method. The size and space of the holes in the nanonet structure are well controlled by oxygen plasma treatment and a metal lift-off process. The nanonet-channel TFTs show improved electrical characteristics in terms of the ION/IOFF, threshold voltage, and subthreshold swing compared with conventional planar devices. The nanonet-channel devices also show a high immunity to hot-carrier injection and a lower variation of electrical characteristics. The standard deviation of VTH (σVTH) is reduced by 33% for a nanonet-channel device with a gate length of 3 μm, which is mainly attributed to the reduction of the grain boundary traps and enhanced gate controllability. These results suggest that the cost-effective NAP technique is promising for manufacturing high-performance nanonet-channel LTPS TFTs with lower electrical variations.


2011 ◽  
pp. 1413-1422
Author(s):  
Lichia Yiu ◽  
Raymond Saner

Since the 1990s, more and more corporate learning has been moved online to allow for flexibility, just-in-time learning, and cost saving in delivering training. This trend has been evolved along with the introduction of Web-based applications for HRM purposes, known as electronic Human Resource Management (e-HRM). By 2005, 39.67% of the corporate learning, among the ASTD (American Society for Training and Development) benchmarking forum companies, was delivered online in comparison to 10.5% in 2001. E-learning has now reached “a high level of (technical) sophistication, both in terms of instructional development and the effective management of resources” in companies with high performance learning function (ASTD, 2006, p.4). The cost per unit, reported by ASTD in its 2006 State of Industry Report, has been declining since 2000 despite the higher training hours received per employee thanks to the use of technology based training delivery and its scalability. However, the overall quality of e-learning either public available in the market or implemented at the workplace remains unstable.


2004 ◽  
Vol 20 (02) ◽  
pp. 122-129
Author(s):  
Benjamin S. Fultz

In both Asia and Europe, preconstruction primers (PCP) are routinely used and retained as an integral part of the coating system. The retention of PCPs can significantly reduce the painting cost of new ship builds. The cost of protective coatings (paint) application in new construction can be upwards of 10% of the total ship cost. The process is labor intensive; therefore, it is logical that most savings are derived from reducing labor steps. Retaining PCP eliminates the necessity of a second blast operation, thus reducing labor cost and hazardous waste disposal cost. This paper addresses the feasibility of retaining PCP as the permanent primer for protective coatings systems applied in such high-performance areas as exterior hull, underwater bottom, and most importantly ballast tanks. Should the retention of PCP be proven as a viable option, the process of coatings application can be improved resulting in significant cost savings. Spending of new construction dollars will not be necessary to remove the PCP prior to the application of high-performance coating and lining systems. The test program discussed in this paper was based on work sponsored by the National Shipbuilding Research Program Advanced Shipbuilding Enterprise (NSRPAES) and the US Navy. The Surface Preparation and Coatings Panel, SP3, of the Ship Production Committee formulated the program and provided direction during the course of the work. The Ship Production Committee is one of SNAME's nine technical and research committees, and consists of the chairman supported by the ship production major initiative panel chairs and selected others.


Sign in / Sign up

Export Citation Format

Share Document