scholarly journals Fabrication and Characterization of Nanonet-Channel LTPS TFTs Using a Nanosphere-Assisted Patterning Technique

Micromachines ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 741
Author(s):  
Gilsang Yoon ◽  
Donghoon Kim ◽  
Iksoo Park ◽  
Bo Jin ◽  
Jeong-Soo Lee

We present the fabrication and electrical characteristics of nanonet-channel (NET) low-temperature polysilicon channel (LTPS) thin-film transistors (TFTs) using a nanosphere-assisted patterning (NAP) technique. The NAP technique is introduced to form a nanonet-channel instead of the electron beam lithography (EBL) or conventional photolithography method. The size and space of the holes in the nanonet structure are well controlled by oxygen plasma treatment and a metal lift-off process. The nanonet-channel TFTs show improved electrical characteristics in terms of the ION/IOFF, threshold voltage, and subthreshold swing compared with conventional planar devices. The nanonet-channel devices also show a high immunity to hot-carrier injection and a lower variation of electrical characteristics. The standard deviation of VTH (σVTH) is reduced by 33% for a nanonet-channel device with a gate length of 3 μm, which is mainly attributed to the reduction of the grain boundary traps and enhanced gate controllability. These results suggest that the cost-effective NAP technique is promising for manufacturing high-performance nanonet-channel LTPS TFTs with lower electrical variations.

Author(s):  
Lichia Yiu ◽  
Raymond Saner

Since the 1990s, more and more corporate learning has been moved online to allow for flexibility, just-in-time learning, and cost saving in delivering training. This trend has been evolved along with the introduction of Web-based applications for HRM purposes, known as electronic Human Resource Management (e-HRM). By 2005, 39.67% of the corporate learning, among the ASTD (American Society for Training and Development) benchmarking forum companies, was delivered online in comparison to 10.5% in 2001. E-learning has now reached “a high level of (technical) sophistication, both in terms of instructional development and the effective management of resources” in companies with high performance learning function (ASTD, 2006, p.4). The cost per unit, reported by ASTD in its 2006 State of Industry Report, has been declining since 2000 despite the higher training hours received per employee thanks to the use of technology based training delivery and its scalability. However, the overall quality of e-learning either public available in the market or implemented at the workplace remains unstable.


2013 ◽  
Vol 2013 (DPC) ◽  
pp. 000334-000346
Author(s):  
Chet Palesko ◽  
E. Jan Vardaman ◽  
Alan Palesko

2.5D and 3D applications using through silicon vias (TSVs) are increasingly being considered as a packaging alternative. Miniaturization and high performance product requirements are driving this move – even though in many cases the cost of both 2.5D and 3D is still high. The primary applications for 2.5D interposers with TSVs are GPUs/CPUs, high-end ASICs, and FPGAs. Adoption for FPGAs has already started. The key to the performance gains in recently introduced FPGAs is the partitioning of an FPGA die into four “slices” that are mounted on a silicon interposer or what Xilinx calls its Stacked Silicon Interconnect technology. Applications for interposers include tablets, gaming, and high-end computing and network systems. The drivers are mainly partitioning large die, integrating single chips into a module, reducing die size where substrate density is the constraint, and using the interposer to minimize the stress on large die that are fabricated with extra-low-k (ELK) dielectrics. The primary applications for 3D solutions are stacked memory cubes and memory plus logic. The true 3D nature of stacking all active silicon allows better miniaturization, but yield issues can quickly drive the cost unacceptably high. This analysis examines the cost drivers for 2.5D and 3D applications. Activity based cost models will be used to analyze the complete cost of fabricating and assembling active die on a silicon interposer and active die stacking on other active die. Total product cost impact - not just the cost of a specific activity - is the focus of this analysis. Since yields play a major role in cost, a sensitivity analysis of the different yields including die yield before wafer probe, die yield after wafer probe, TSV yield, interposer yield, assembly yield, substrate yield, etc. will be presented. The critical yield points in the manufacturing flow and dominant activity cost drivers (equipment, material, and /or labor) will be presented as well as suggested minimum thresholds for 2.5D and 3D technology to be a cost effective technology.


2014 ◽  
Vol 1635 ◽  
pp. 55-62
Author(s):  
Yongkun Sin ◽  
Stephen LaLumondiere ◽  
Nathan Wells ◽  
Zachary Lingley ◽  
Nathan Presser ◽  
...  

ABSTRACTHigh performance and cost effective multi-junction III-V solar cells are attractive for satellite applications. High performance multi-junction solar cells are based on a triple-junction design that employs an InGaP top-junction, a GaAs middle-junction, and a bottom-junction consisting of a 1.0 – 1.25 eV-material. The most attractive 1.0 – 1.25 eV-material is the lattice-matched dilute nitride such as InGaAsN(Sb). A record efficiency of 43.5% was achieved from multi-junction solar cells including dilute nitride materials [1]. In addition, cost effective manufacturing of III-V triple-junction solar cells can be achieved by employing full-wafer epitaxial lift-off (ELO) technology, which enables multiple substrate re-usages. We employed time-resolved photoluminescence (TR-PL) techniques to study carrier dynamics in both pre- and post-ELO processed GaAs double heterostructures (DHs) as well as in MOVPE-grown bulk dilute nitride layers lattice matched to GaAs substrates.


2007 ◽  
Vol 29-30 ◽  
pp. 127-130
Author(s):  
Colleen J. Bettles ◽  
Rimma Lapovok ◽  
H.P. Ng ◽  
Dacian Tomus ◽  
Barry C. Muddle

The range of commercial titanium alloys available is currently extremely restricted, with one alloy (Ti-6Al-4V), and derivatives of it, accounting for a very large proportion of all applications. High performance alloys are costly to fabricate and limited to low-volume applications that can sustain the cost. With the emergence of new processing technologies that promise to reduce significantly the cost of production of titanium metal, especially in powder form, there is an emerging imperative for cost-effective near net shape powder processing techniques to permit the benefit of reduced metal cost to be passed on to higher-volume applications. Equally, there is a need for the design and development of new alloys that are intrinsically low-cost and lend themselves to fabrication by novel cost-effective net shape processing. The approaches that might be used to select, design and process both conventional alloys and novel alloy systems will be reviewed, with a focus on innovation in design of low-cost alloys amenable to new processing paths and increasingly tolerant of variability in composition.


Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4925
Author(s):  
Ikkurthi Kanaka Durga ◽  
Kummara Venkata Guru Raghavendra ◽  
Naga Bhushanam Kundakarla ◽  
Suresh Alapati ◽  
Jin-Woo Ahn ◽  
...  

Nanocomposite electrodes receive much attention because of their excellent energy storage nature. Electrodes for supercapacitors have come a major source of interest. In this pursuit, the current work elucidates binder-free coral reefs resembling ZnO/CoS2 nanoarchitectures synthesized on the surface of Ni foams employing the cost-effective hydrothermal route. The Zno/CoS2 nanocomposite demonstrated excellent battery-type behavior, which can be employed for supercapcitor application. Various analyses were carried out in the current study, such as X-ray diffraction and high-resolution scanning electron microscopy, which allowed defining the crystalline nature and morphology of surface with ZnO/CoS2 nanoarchitectures. Electrochemical measures such as cyclic voltammetry, galvanostatic charge discharge, and potentiostatic impedance spectroscopy confirmed the battery-type behavior of the material. The synthesized precursors of binder-free ZnO/CoS2 nanostructures depicted an excellent specific capacity of 400.25 C·g−1 at 1 A·g−1, with a predominant cycling capacity of 88. 2% and retention holding of 68% at 10 A·g−1 and 2 A·g−1, even after 4000 cycles, representing an improvement compared to the pristine ZnO and CoS2 electroactive materials. Therefore, the electrochemical and morphological analyses suggest the excellent behavior of the ZnO/CoS2 nanoarchitectures, making them promising for supercapacitors.


2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Xueyan Liu ◽  
Dong Peng ◽  
Wei Guo ◽  
Xibo Ma ◽  
Xin Yang ◽  
...  

Photoacoustic imaging (PAI) has been employed to reconstruct endogenous optical contrast present in tissues. At the cost of longer calculations, a compressive sensing reconstruction scheme can achieve artifact-free imaging with fewer measurements. In this paper, an effective acceleration framework using the alternating direction method (ADM) was proposed for recovering images from limited-view and noisy observations. Results of the simulation demonstrated that the proposed algorithm could perform favorably in comparison to two recently introduced algorithms in computational efficiency and data fidelity. In particular, it ran considerably faster than these two methods. PAI with ADM can improve convergence speed with fewer ultrasonic transducers, enabling a high-performance and cost-effective PAI system for biomedical applications.


2011 ◽  
pp. 1413-1422
Author(s):  
Lichia Yiu ◽  
Raymond Saner

Since the 1990s, more and more corporate learning has been moved online to allow for flexibility, just-in-time learning, and cost saving in delivering training. This trend has been evolved along with the introduction of Web-based applications for HRM purposes, known as electronic Human Resource Management (e-HRM). By 2005, 39.67% of the corporate learning, among the ASTD (American Society for Training and Development) benchmarking forum companies, was delivered online in comparison to 10.5% in 2001. E-learning has now reached “a high level of (technical) sophistication, both in terms of instructional development and the effective management of resources” in companies with high performance learning function (ASTD, 2006, p.4). The cost per unit, reported by ASTD in its 2006 State of Industry Report, has been declining since 2000 despite the higher training hours received per employee thanks to the use of technology based training delivery and its scalability. However, the overall quality of e-learning either public available in the market or implemented at the workplace remains unstable.


2004 ◽  
Vol 20 (02) ◽  
pp. 122-129
Author(s):  
Benjamin S. Fultz

In both Asia and Europe, preconstruction primers (PCP) are routinely used and retained as an integral part of the coating system. The retention of PCPs can significantly reduce the painting cost of new ship builds. The cost of protective coatings (paint) application in new construction can be upwards of 10% of the total ship cost. The process is labor intensive; therefore, it is logical that most savings are derived from reducing labor steps. Retaining PCP eliminates the necessity of a second blast operation, thus reducing labor cost and hazardous waste disposal cost. This paper addresses the feasibility of retaining PCP as the permanent primer for protective coatings systems applied in such high-performance areas as exterior hull, underwater bottom, and most importantly ballast tanks. Should the retention of PCP be proven as a viable option, the process of coatings application can be improved resulting in significant cost savings. Spending of new construction dollars will not be necessary to remove the PCP prior to the application of high-performance coating and lining systems. The test program discussed in this paper was based on work sponsored by the National Shipbuilding Research Program Advanced Shipbuilding Enterprise (NSRPAES) and the US Navy. The Surface Preparation and Coatings Panel, SP3, of the Ship Production Committee formulated the program and provided direction during the course of the work. The Ship Production Committee is one of SNAME's nine technical and research committees, and consists of the chairman supported by the ship production major initiative panel chairs and selected others.


1993 ◽  
Vol 323 ◽  
Author(s):  
H. F. Lockwood ◽  
C. A. Armiento

AbstractThe principal driver behind advanced hardware development in the communications and computer industries can be reduced to an optimal set of parameters related to performance, cost and reliability. High performance systems typically have high functional density. For example, the continuing trend of VLSI is toward reduced feature size, increased wiring density and larger chip size to achieve increasingly higher levels of on-chip functionality. At some point in the cost structure, however, the single chip solution is no longer viable, and monolithic integration gives way to hybrid integration. In this respect, the multichip module fills a void in the packaging/ integration hierarchy between the ever-larger single chip and the printed wiring board.An analogous situation is emerging in optoelectronics. The single chip package with its relatively low system functionality and high cost is giving way to the multi-technology module that integrates optical and electronic functions within a single package. One of the most interesting approaches to the multi-technology module uses a silicon substrate as the platform for hybrid integration of electronics and optoelectronics. It will be argued that this “silicon waferboard” approach is the cost-effective route to manufacturability of high-performance modules for communications and computer systems. Enhanced reliability follows from applying standard IC processing technology at the platform level in the packaging hierarchy.


2021 ◽  
Vol 9 (1) ◽  
pp. 173-180
Author(s):  
Wentao Li ◽  
Baowen Wang ◽  
Tiezheng Miao ◽  
Jiaxiang Liu ◽  
Guorui Fu ◽  
...  

Despite the cost-effective and large-area scalable advantages of NIR-PLEDs based on iridium(iii)-complex-doped polymers, the intrinsic phase-separation issue leading to inferior device performance is difficult to address.


Sign in / Sign up

Export Citation Format

Share Document