LTCC Substrates for High Performance Strain Gauges

2012 ◽  
Vol 2012 (CICMT) ◽  
pp. 000175-000180
Author(s):  
Bjoern Brandt ◽  
Marion Gemeinert ◽  
Ralf Koppert ◽  
Jochen Bolte ◽  
Torsten Rabe

Recent advances in the development of high gauge factor thin-films for strain gauges prompt the research on advanced substrate materials. A glass ceramic composite has been developed in consideration of a high coefficient of thermal expansion and a low modulus of elasticity for the application as support material for thin-film sensors. Constantan foil strain gauges were fabricated from this material by tape casting, pressure-assisted sintering and subsequent lamination of the metal foil on the planar ceramic substrates. The sensors were mounted on a strain gauge beam arrangement and load curves and creep behavior were evaluated. The accuracy of the assembled load cells correspond to accuracy class C6. That qualifies the load cells for the use in automatic packaging units and confirms the applicability of the LTCC substrates for fabrication of accurate strain gauges. To facilitate the deposition of thin film sensor structures onto the LTCC substrates, the pressure-assisted sintering technology has been refined. By the use of smooth setters instead of release tapes substrates with minimal surface roughness were fabricated. Metallic thin films deposited on these substrates exhibit low surface resistances comparable to thin films on commercial alumina thin-film substrates. The presented advances in material design and manufacturing technology are important to promote the development of high performance thin-film strain gauges.

2021 ◽  
Vol 10 (1) ◽  
pp. 53-61
Author(s):  
Maximilian Mathis ◽  
Dennis Vollberg ◽  
Matthäus Langosch ◽  
Dirk Göttel ◽  
Angela Lellig ◽  
...  

Abstract. An important property of high-precision mechanical sensors such as force transducers or torque sensors is the so-called creep error. It is defined as the signal deviation over time at a constant load. Since this signal deviation results in a reduced accuracy of the sensor, it is beneficial to minimize the creep error. Many of these sensors consist of a metallic spring element and strain gauges. In order to realize a sensor with a creep error of almost zero, it is necessary to compensate for the creep behavior of the metallic spring element. This can be achieved by creep adjustment of the used strain gauges. Unlike standard metal foil strain gauges with a gauge factor of 2, a type of strain gauges based on sputter-deposited NiCr-carbon thin films on polymer substrates offers the advantage of an improved gauge factor of about 10. However, for this type of strain gauge, creep adjustment by customary methods is not possible. In order to remedy this disadvantage, a thorough creep analysis is carried out. Five major influences on the creep error of force transducers equipped with NiCr-carbon thin-film strain gauges are examined, namely, the material creep of the metallic spring element (1), the creep (relaxation) of the polymer substrate (2), the composition of the thin film (3), the strain transfer to the thin film (4), and the kind of strain field on the surface of the transducer (5). Consequently, we present two applicable methods for creep adjustment of NiCr-carbon thin- film strain gauges. The first method addresses the intrinsic creep behavior of the thin film by a modification of the film composition. With increasing Cr content (at the expense of Ni, the intrinsic negative creep error can be shifted towards zero. The second method is not based on the thin film itself but rather on a modification of the strain transfer from the polyimide carrier to the thin film. This is achieved by controlled cutting of well-defined deep trenches into the polymer substrate via a picosecond laser.


2021 ◽  
Vol 14 ◽  
Author(s):  
Gabriela Leal ◽  
Humber Furlan ◽  
Marcos Massi ◽  
Mariana Amorim Fraga

Background: Miniaturized piezoresistive sensors, particularly strain gauges, pressure sensors, and accelerometers, have been used for measurements and control applications in various fields, such as automotive, aerospace, industrial, biomedical, sports, and many more. A variety of different materials have been investigated for the development of these sensors. Among them, diamond-like carbon (DLC) thin films have emerged as one of the most promising piezoresistive sensing materials due to their excellent mechanical properties, such as high hardness and high Young’s modulus. At the same time, metal doping has been studied to enhance its electrical properties. Objective: This article explores the use of co-sputtered tungsten-doped diamond-like carbon (W-DLC) thin films as microfabricated strain gauges or piezoresistors. Methods: Different serpentine thin-film resistors were microfabricated on co-sputtered W-DLC thin films using photolithography, metallization, lift-off, and RIE (reactive ion etching) processes. In order to evaluate their piezoresistive sensing performance, gauge factor (GF) measurements were carried out at room temperature using the cantilever beam method. Results: GF values obtained in this study for co-sputtered W-DLC thin films are comparable to those reported for W-DLC films produced and characterized by other techniques, which indicates the feasibility of our approach to use them as sensing materials in piezoresistive sensors. Conclusion: W-DLC thin films produced by the co-magnetron sputtering technique can be considered as sensing materials for miniaturized piezoresistive sensors due to the following key advantages: (i) easy and well-controlled synthesis method, (ii) good piezoresistive properties exhibiting a GF higher than metals, and (iii) thin-film resistors formed by a simple microfabrication process.


2020 ◽  
Vol 9 (2) ◽  
pp. 219-226
Author(s):  
Maximilian Mathis ◽  
Dennis Vollberg ◽  
Matthäus Langosch ◽  
Dirk Göttel ◽  
Angela Lellig ◽  
...  

Abstract. Strain gauges based on polyimide carrier foils and piezoresistive granular thin films are highly sensitive to strain. Unlike conventional metal foil, granular film strain gauges also have a pronounced sensitivity to strain acting in the transverse direction. A novel method that allows for the modification of the strain transfer is proposed and proven experimentally. The method is based on the creation of stand-alone polyimide paths, on top of which the piezoresistive thin film is located. In this way, the granular film hardly receives any transverse strain; hence, the transverse sensitivity is drastically reduced. A picosecond laser system can be used for both patterning of the thin film and for controlled ablation of polyimide in order to generate well-defined high path structures. The working principle of the method is demonstrated by simulation, followed by an experimental verification using measurements of the transverse gauge factor. Furthermore, the output signal of force transducers may be increased using granular thin film strain gauges of reduced transverse sensitivity.


2021 ◽  
Vol 9 (13) ◽  
pp. 4522-4531
Author(s):  
Chao Yun ◽  
Matthew Webb ◽  
Weiwei Li ◽  
Rui Wu ◽  
Ming Xiao ◽  
...  

Interfacial resistive switching and composition-tunable RLRS are realized in ionically conducting Na0.5Bi0.5TiO3 thin films, allowing optimised ON/OFF ratio (>104) to be achieved with low growth temperature (600 °C) and low thickness (<20 nm).


2014 ◽  
Vol 979 ◽  
pp. 240-243
Author(s):  
Narathon Khemasiri ◽  
Chanunthorn Chananonnawathorn ◽  
Mati Horprathum ◽  
Pitak Eiamchai ◽  
Pongpan Chindaudom ◽  
...  

Tantalum oxide (Ta2O5) thin films were deposited as the protective layers for the metal surface finishing by the DC reactive magnetron sputtering system. The effect of the Ta2O5 film thickness, ranging from 25 nm to 200 nm, on the physical properties and the anti-corrosive performance were investigated. The grazing-incidence X-ray diffraction (GIXRD) and the atomic force microscopy (AFM) were used to examine the crystal structures and the surface topologies of the prepared films, respectively. The XRD results showed that the Ta2O5 thin films were all amorphous. The AFM micrographs demonstrated the film morphology with quite smooth surface features. The surface roughness tended to be rough when the film thickness was increased. To examine the protective performance of the films, the poteniostat and galvanometer was utilized to examine the electrochemical activities with the 1M NaCl as the corrosive electrolyte. The results from the I-V polarization curves (Tafel slope) indicated that, with the Ta2O5 thin film, the current density was significantly reduced by 3 orders of magnitude when compared with the blank sample. Such results were observed because of fully encapsulated surface of the samples were covered with the sputtered Ta2O5 thin films. The study also showed that the Ta2O5 thin film deposited at 50 nm yielded the most extreme protective performance. The Ta2O5 thin films therefore could be optimized for the smallest film thickness for highly potential role in the protective performance of the metal surface finishing products.


2011 ◽  
Vol 254 ◽  
pp. 167-170 ◽  
Author(s):  
Subodh Srivastava ◽  
Sumit Kumar ◽  
Vipin Kumar Jain ◽  
Y.K. Vijay

In the present work we have reported the effect of temperature on the gas sensing properties of pure Polyaniline (PANI) and Multiwall carbon nanotube (MWNT) doped PANI composite thin film based chemiresistor type gas sensors for hydrogen gas sensing application. PANI and MWNT doped PANI composite were synthesized by in situ chemical oxidative polymerization of aniline using ammonium persulfate in an acidic medium. The thin sensing film of chemically synthesized PANI and MWNT doped PANI composite were deposited onto finger type Cu-interdigited electrodes using spin cast technique to prepared chemiresistor type gas sensor. The electrical properties of these composite thin films were characterized by I-V measurements as function of temperature. The I-V measurement revealed that conductivity of composite thin films increased as the temperature increased. The changes in resistance of the composite thin film sensor were utilized for detection of hydrogen gas. It was observed that at room temperature, MWNT doped PANI composite sensor shows higher response value and sensitivity with good repeatability in comparison to pure PANI thin film sensor. It was also observed that both PANI and MWNT doped PANI composite thin film based sensors showed unstable behavior as the temperature increased. The surface morphology of these composite thin films has also been characterized by scanning electron microscopy (SEM) measurement.


2019 ◽  
Vol 12 (7) ◽  
pp. 071004 ◽  
Author(s):  
Jong-Baek Seon ◽  
Yong Hyun Cho ◽  
Won Hyung Lee ◽  
Jun-Hee Lee ◽  
Youn Sang Kim ◽  
...  

2020 ◽  
Vol 2 (1) ◽  
pp. 368-376 ◽  
Author(s):  
Nan Chen ◽  
Michael R. Scimeca ◽  
Shlok J. Paul ◽  
Shihab B. Hafiz ◽  
Ze Yang ◽  
...  

A high-performance n-type thermoelectric Ag2Se thin film via cation exchange using a low-cost solution processed Cu2Se template.


2018 ◽  
Vol 6 (37) ◽  
pp. 9981-9989 ◽  
Author(s):  
Nikhil Nikhil ◽  
Rajiv K. Pandey ◽  
Praveen Kumar Sahu ◽  
Manish Kumar Singh ◽  
Rajiv Prakash

Successful practical application of a polymer or its nanocomposite depends on the ability to produce a high performance electronic device at a significantly lesser cost and time than those needed to manufacture conventional devices.


2016 ◽  
Vol 4 (20) ◽  
pp. 4478-4484 ◽  
Author(s):  
Ao Liu ◽  
Guoxia Liu ◽  
Huihui Zhu ◽  
Byoungchul Shin ◽  
Elvira Fortunato ◽  
...  

Eco-friendly IWO thin films are fabricated via a low-cost solution process and employed as channel layers in thin-film transistors.


Sign in / Sign up

Export Citation Format

Share Document