System-on-Chip Integrated MEMS Packages for RF LNA Testing and Self-Calibration

2011 ◽  
Vol 8 (4) ◽  
pp. 154-163
Author(s):  
Bruce C. Kim ◽  
Sukeshwar Kannan ◽  
Sai Shravan Evana ◽  
Seok-Ho Noh

In this paper, we present MEMS-enhanced integrated package design which provides the capability to self-test and self-calibrate integrated circuit chips. We have developed a novel test technique where the test stimulus is generated by modulating the RF carrier signal with another signal mixed with additive white Gaussian noise. This novel test stimulus is provided as the input to the RF circuit and the peak-to-average ratio (PAR) is measured at the output. Simulations were carried out for fault-free and fault-induced circuit conditions, and their corresponding PARs were stored in the look-up table (LUT). Test simulations were performed and the results were compared with the look-up table to verify whether the device is fault-free. In faulty circuit conditions, calibration was performed using a tuning circuit made of MEMS switches. The entire validation of the design using the test technique and self-calibration of the RF circuit was automated using the calibration algorithm. This testing and self-calibration technique is exhaustive and efficient for present-day communication systems.

2011 ◽  
Vol 2011 (1) ◽  
pp. 000635-000640
Author(s):  
Sukeshwar Kannan ◽  
Bruce Kim ◽  
Naga Sai Evana ◽  
Anurag Gupta ◽  
Seok-Ho Noh

This paper presents MEMS enhanced integrated packaging which provides testing and self-calibration to identify process-related defects and out of specification circuits, thereby enabling the package to calibrate itself in case of faults and defects to designed performance levels. We have developed a novel multi-tone dither test technique where the test stimulus is generated by modulating the RF carrier signal with a multi-tone signal generated using an Arbitrary Waveform Generator (AWG) with additive white Gaussian noise. This test stimulus is provided as input to the RF circuit and peak-to-average ratio (PAR) is measured at the output. For a faulty circuit, a significant difference is observed in the value of PAR as compared to a fault-free circuit. Simulation is performed for various circuit conditions such as fault-free as well as fault-induced and their corresponding PARs are stored in the look-up table. Hardware testing is performed and the results are compared with the look-up table to verify whether the device is fault-free. In faulty circuit conditions, calibration is performed using a tuning circuit which consists of MEMS switches. The entire validation of the design using test technique and self-calibration of the RF circuit is automated using the calibration algorithm. This testing and self-calibration technique is exhaustive and efficient for present-day communication systems.


2012 ◽  
Vol 2012 (DPC) ◽  
pp. 002006-002027
Author(s):  
Bruce Kim ◽  
Sukeshwar Kannan ◽  
Anurag Gupta ◽  
Naga Sai Evana

Today's integrated packaging consists of analog, mixed-signal and RF circuits. These integrated packages are now available in 3-D which makes it extremely difficult to test for defects and their circuit functionalities. This paper provides 3D MEMS integrated packaging which provides self testing and calibrations to overcome process defects and out of spec circuits inside the package making the package self heal itself in case of faults and defects. We have worked on TSV based 3D packaging with MEMS switches to perform self calibrations. We developed a novel multi-tone dither test technique where the test stimulus is generated by modulating the RF carrier signal with a multi-tone signal generated on an Arbitrary Waveform Generator (AWG) with additive white Gaussian noise. We used arrays of MEMS switches to perform self testing. We have considered a low noise amplifier as the reference RF circuit which operates between 4 GHz and 6 GHz. The entire validation of the design using test technique and self-calibration of the RF circuit is automated using the calibration algorithm. The paper presents defects in TSV due to mechanical stress and thermal changes.


2010 ◽  
Vol 1 (1) ◽  
pp. 113-122
Author(s):  
Rajesh Kumar ◽  
Swapna Devi ◽  
S.S. Pattnaik

“In this paper FPGA based hardware co-simulation of an area and power efficient FIR filter for wireless communication systems is presented. The implementation is based on distributed arithmetic (DA) which substitutes multiply-and-accumulate operations with look up table (LUT) accesses. Parallel Distributed arithmetic (PDA) look up table approach is used to implement an FIR Filter taking optimal advantage of the look up table structure of FPGA using VHDL. The proposed design is hardware co-simulated using System Generator10.1, synthesized with Xilinx ISE 10.1 software, and implemented on Virtex-4 based xc4vlx25-10ff668 target device. Results show that the proposed design operates at 17.5 MHz throughput and consumes 0.468W power with considerable reduction in required resources to implement the design as compared to Coregen and add/shift based design styles. Due to this reduction in required resources the proposed design can also be implemented on Spartan-3 FPGA device to provide cost effective solution for DSP and wireless communication applications.”


Kerntechnik ◽  
2006 ◽  
Vol 71 (4) ◽  
pp. 192-202
Author(s):  
D. K. Chandraker ◽  
P. K. Vijayan ◽  
D. Saha ◽  
R. K. Sinha

2021 ◽  
Vol 10 (2) ◽  
pp. 79
Author(s):  
Ching-Yun Mu ◽  
Tien-Yin Chou ◽  
Thanh Van Hoang ◽  
Pin Kung ◽  
Yao-Min Fang ◽  
...  

Spatial information technology has been widely used for vehicles in general and for fleet management. Many studies have focused on improving vehicle positioning accuracy, although few studies have focused on efficiency improvements for managing large truck fleets in the context of the current complex network of roads. Therefore, this paper proposes a multilayer-based map matching algorithm with different spatial data structures to deal rapidly with large amounts of coordinate data. Using the dimension reduction technique, the geodesic coordinates can be transformed into plane coordinates. This study provides multiple layer grouping combinations to deal with complex road networks. We integrated these techniques and employed a puncture method to process the geometric computation with spatial data-mining approaches. We constructed a spatial division index and combined this with the puncture method, which improves the efficiency of the system and can enhance data retrieval efficiency for large truck fleet dispatching. This paper also used a multilayer-based map matching algorithm with raster data structures. Comparing the results revealed that the look-up table method offers the best outcome. The proposed multilayer-based map matching algorithm using the look-up table method is suited to obtaining competitive performance in identifying efficiency improvements for large truck fleet dispatching.


2005 ◽  
Vol 5 (2) ◽  
pp. 1995-2015 ◽  
Author(s):  
A. A. Kokhanovsky ◽  
V. V. Rozanov ◽  
T. Nauss ◽  
C. Reudenbach ◽  
J. S. Daniel ◽  
...  

Abstract. A recently developed cloud retrieval algorithm for the SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY) is briefly presented and validated using independent and well tested cloud retrieval techniques based on the look-up-table approach for MODeration resolutIon Spectrometer data. The results of the cloud top height retrievals using measurements in the oxygen A-band by an airborne crossed Czerny-Turner spectrograph and the Global Ozone Monitoring Experiment (GOME) instrument are compared with those obtained from airborne dual photography and retrievals using data from Along Track Scanning Radiometer (ATSR-2), respectively.


Author(s):  
Z. Wang ◽  
J. Li ◽  
A. Wang ◽  
J. Wang

In the last years several V-SLAM(Visual Simultaneous Localization and Mapping) approaches have appeared showing impressive reconstructions of the world. However these maps are built with far more than the required information. This limitation comes from the whole process of each key-frame. In this paper we present for the first time a mapping method based on the LOOK UP TABLE(LUT) for visual SLAM that can improve the mapping effectively. As this method relies on extracting features in each cell divided from image, it can get the pose of camera that is more representative of the whole key-frame. The tracking direction of key-frames is obtained by counting the number of parallax directions of feature points. LUT stored all mapping needs the number of cell corresponding to the tracking direction which can reduce the redundant information in the key-frame, and is more efficient to mapping. The result shows that a better map with less noise is build using less than one-third of the time. We believe that the capacity of LUT efficiently building maps makes it a good choice for the community to investigate in the scene reconstruction problems.


Sign in / Sign up

Export Citation Format

Share Document