scholarly journals Malaria risk map for India based on climate, ecology and geographical modelling

2019 ◽  
Vol 14 (2) ◽  
Author(s):  
Soma Sarkar ◽  
Poonam Singh ◽  
Mercy Aparna L. Lingala ◽  
Preeti Verma ◽  
Ramesh C. Dhiman

Mapping the malaria risk at various geographical levels is often undertaken considering climate suitability, infection rate and/or malaria vector distribution, while the ecological factors related to topography and vegetation cover are generally neglected. The present study abides a holistic approach to risk mapping by including topographic, climatic and vegetation components into the framework of malaria risk modelling. This work attempts to delineate the areas of Plasmodium falciparum and Plasmodium vivax malaria transmission risk in India using seven geo-ecological indicators: temperature, relative humidity, rainfall, forest cover, soil, slope, altitude and the normalized difference vegetation index using multi-criteria decision analysis based on geographical information system (GIS). The weight of the risk indicators was assigned by an analytical hierarchical process with the climate suitability (temperature and humidity) data generated using fuzzy logic. Model validation was done through both primary and secondary datasets. The spatio-ecological model was based on GIS to classify the country into five zones characterized by various levels of malaria transmission risk (very high; high; moderate; low; and very low. The study found that about 13% of the country is under very high malaria risk, which includes the malaria- endemic districts of the states of Chhattisgarh, Odisha, Jharkhand, Tripura, Assam, Meghalaya and Manipur. The study also showed that the transmission risk suitability for P. vivax is higher than that for P. falciparum in the Himalayan region. The field study corroborates the identified malaria risk zones and highlights that the low to moderate risk zones are outbreak-prone. It is expected that this information will help the National Vector Borne Disease Control Programme in India to undertake improved surveillance and conduct target based interventions.

2011 ◽  
Vol 2011 ◽  
pp. 1-9 ◽  
Author(s):  
E. Adlaoui ◽  
C. Faraj ◽  
M. El Bouhmi ◽  
A. El Aboudi ◽  
S. Ouahabi ◽  
...  

Malaria resurgence risk in Morocco depends, among other factors, on environmental changes as well as the introduction of parasite carriers. The aim of this paper is to analyze the receptivity of the Loukkos area, large wetlands in Northern Morocco, to quantify and to map malaria transmission risk in this region using biological and environmental data. This risk was assessed on entomological risk basis and was mapped using environmental markers derived from satellite imagery. Maps showing spatial and temporal variations of entomological risk for Plasmodium vivax and P. falciparum were produced. Results showed this risk to be highly seasonal and much higher in rice fields than in swamps. This risk is lower for Afrotropical P. falciparum strains because of the low infectivity of Anopheles labranchiae, principal malaria vector in Morocco. However, it is very high for P. vivax mainly during summer corresponding to the rice cultivation period. Although the entomological risk is high in Loukkos region, malaria resurgence risk remains very low, because of the low vulnerability of the area.


2009 ◽  
Vol 12 (3) ◽  
pp. 338-354 ◽  
Author(s):  
Mauricio Edilberto Rincón-Romero ◽  
Julián Esteban Londoño

Despite much research in the identification of areas with malaria, it is urgent to further investigate mapping techniques to achieve better approaches in strategies to prevent, mitigate, and eradicate the mosquito and the illness eventually. By using spatial distributed modeling techniques with Geographical Information Systems (GIS), the study proposes methodology to map malaria risk zoning for the municipality of Buenaventura in Colombia. The model proposed by Craig et al.¹ using climatic information was adapted to the conditions of the study area regarding scale and spatial resolution. Geomorphologic and anthropic variables were added to improve spatial allocation of areas with higher risk of contracting the illness, refining zoning. Then, they were contrasted with the locations reported by health entities², taking into account spatial distribution. The comparison of results shows a decrease in the area obtained initially using the Craig et al. model¹ (1999), from 5,422.4 km² (89.1% of the municipality's territory) to 624.3km² (approximately 10% of the municipality's area), yielding a total reduction of 78.8% when environmental and anthropic variables were included in the model. Data show that of the 9,863 cases reported during 2001 to 2005 for 20 selected towns as basis for the amount of surveyed malaria cases², 1,132 were located in the very high-risk areas, 7,662 were in the areas of moderate risk, and 1,066 cases in low-risk areas, showing that 89% of the cases reported fell into the areas with higher risk for malaria.


2021 ◽  
Vol 104 (4) ◽  
pp. 1359-1370
Author(s):  
Guofa Zhou ◽  
Daibin Zhong ◽  
Ming-Chieh Lee ◽  
Xiaoming Wang ◽  
Harrysone E. Atieli ◽  
...  

ABSTRACTMalaria risk factor assessment is a critical step in determining cost-effective intervention strategies and operational plans in a regional setting. We develop a multi-indicator multistep approach to model the malaria risks at the population level in western Kenya. We used a combination of cross-sectional seasonal malaria infection prevalence, vector density, and cohort surveillance of malaria incidence at the village level to classify villages into malaria risk groups through unsupervised classification. Generalized boosted multinomial logistics regression analysis was performed to determine village-level risk factors using environmental, biological, socioeconomic, and climatic features. Thirty-six villages in western Kenya were first classified into two to five operational groups based on different combinations of malaria risk indicators. Risk assessment indicated that altitude accounted for 45–65% of all importance value relative to all other factors; all other variable importance values were < 6% in all models. After adjusting by altitude, villages were classified into three groups within distinct geographic areas regardless of the combination of risk indicators. Risk analysis based on altitude-adjusted classification indicated that factors related to larval habitat abundance accounted for 63% of all importance value, followed by geographic features related to the ponding effect (17%), vegetation cover or greenness (15%), and the number of bed nets combined with February temperature (5%). These results suggest that altitude is the intrinsic factor in determining malaria transmission risk in western Kenya. Malaria vector larval habitat management, such as habitat reduction and larviciding, may be an important supplement to the current first-line vector control tools in the study area.


2020 ◽  
Vol 33 (02) ◽  
pp. 525-538
Author(s):  
Fereshteh Namdar ◽  
Shahla Mahmoudi ◽  
Abazar Esmali Ouri ◽  
Ebrahim Pazira

The intensity of soil erosion to occur in a region depends on multiple factors including climatic conditions, elevation, terrain, soil type, and land use. Among these factors, land use is one of the particular importance as it reflects the outsized role of humans in the exacerbation of erosion condition. This study aimed to investigate the effects of land use changes on soil erosion in Qaresu watershed, using Remote Sensing (RS) and Geographical Information System (GIS) techniques, a watershed with an area of ​​4370.8 km2 located in the center of Ardabil province, northwest of Iran. For this purpose, the 1985 and 2015 Landsat images captured by TM and OLI-TIRS sensors were used to develop the land use maps of the watershed area using the maximum likelihood method. The erosion zoning maps were then developed by integrating the maps of land use, slope, lithology, distance from roads, distance from streams, precipitation, and soil using the Weighted Linear Combination (WLC) method after an AHP-based weighting stage. The results showed that in the 30-year period from 1985 to 2015, the region has experienced a decrease in the area of forest, dry farming, and rangeland land uses and an increase in the area of land uses defined as urban, barren, irrigated farming, and water cover. In total, dry farming and rangeland were the largest land-uses in the studied area. According to the developed erosion zoning maps, in 1985, 14.4% and 36.84%, and in 2015, 15.64% and 32.3% of the studied area belonged to high and very high risk zones in terms of erosion potential, respectively. In defined two periods, high risk and very high risk zones were mostly positioned over dry and irrigated farmlands.


2018 ◽  
Vol 13 (1) ◽  
Author(s):  
Amare Sewnet Minale ◽  
Kalkidan Alemu

The main objective of this study was to develop a malaria risk map for Bahir Dar City, Amhara, which is situated south of Lake Tana on the Ethiopian plateau. Rainfall, temperature, altitude, slope and land use/land cover (LULC), as well as proximity measures to lake, river and health facilities, were investigated using remote sensing and geographical information systems. The LULC variable was derived from a 2012 SPOT satellite image by supervised classification, while 30-m spatial resolution measurements of altitude and slope came from the Shuttle Radar Topography Mission. Metrological data were collected from the National Meteorological Agency, Bahir Dar branch. These separate datasets, represented as layers in the computer, were combined using weighted, multi-criteria evaluations. The outcome shows that rainfall, temperature, slope, elevation, distance from the lake and distance from the river influenced the malaria hazard the study area by 35%, 15%, 10%, 7%, 5% and 3%, respectively, resulting in a map showing five areas with different levels of malaria hazard: very high (11.2%); high (14.5%); moderate (63.3%); low (6%); and none (5%). The malaria risk map, based on this hazard map plus additional information on proximity to health facilities and current LULC conditions, shows that Bahir Dar City has areas with very high (15%); high (65%); moderate (8%); and low (5%) levels of malaria risk, with only 2% of the land completely riskfree. Such risk maps are essential for planning, implementing, monitoring and evaluating disease control as well as for contemplating prevention and elimination of epidemiological hazards from endemic areas.


2018 ◽  
Vol 69 (7) ◽  
pp. 1205-1211 ◽  
Author(s):  
Canjun Zheng ◽  
Dong Jiang ◽  
Fangyu Ding ◽  
Jingying Fu ◽  
Mengmeng Hao

Abstract Background Substantial outbreaks of scrub typhus, coupled with the discovery of this vector-borne disease in new areas, suggest that the disease remains remarkably neglected. The objectives of this study were to map the contemporary and potential transmission risk zones of the disease and to provide novel insights into the health burden imposed by scrub typhus in southern China. Methods Based on the assembled data sets of annual scrub typhus cases and maps of environmental and socioeconomic correlates, a boosted regression tree modeling procedure was used to identify the environmental niche of scrub typhus and to predict the potential infection zones of the disease. Additionally, we estimated the population living in the potential scrub typhus infection areas in southern China. Results Spatiotemporal patterns of the annual scrub typhus cases in southern China between 2007 and 2017 reveal a tremendous, wide spread of scrub typhus. Temperature, relative humidity, elevation, and the normalized difference vegetation index are the main factors that influence the spread of scrub typhus. In southern China, the predicted highest transmission risk areas of scrub typhus are mainly concentrated in several regions, such as Yunnan, Guangxi, Guangdong, Hainan, and Fujian. We estimated that 162 684 million people inhabit the potential infection risk zones in southern China. Conclusions Our results provide a better understanding of the environmental and socioeconomic factors driving scrub typhus spread, and estimate the potential infection risk zones beyond the disease’s current, limited geographical extent, which enhances our capacity to target biosurveillance and help public health authorities develop disease control strategies.


2017 ◽  
Vol 12 (3) ◽  
pp. 725-733
Author(s):  
Garima Gupta ◽  
R S Yadav ◽  
Deepak Maurya

The spatial analysis of land use and land cover (LULC) dynamics is necessary for sustainable utilization and management of the land resources of an area. Remote sensing along with Geographical Information System emerged as an effective technique for mapping the LU/LC categories of an area in an efficient and cost-effective manner. The present study was conducted in Banjar river watershed located in Balaghat and Mandla district of Madhya Pradesh, India. The Normalized Difference Vegetation Index (NDVI) approach was adopted for LU/LC classification of study area. The Landsat-8 satellite data of year 2013 was selected for the classification purpose. The NDVI values were generated in ERDAS Imagine 2011 software and LU/LC map was prepared in ARC GIS environment. On the basis of NDVI values five LU/LC classes were recognized in the study area namely river & water body, waste land & habitation, forest, agriculture/other vegetation, open land/fallow land/barren land. The forest cover was found to be highly distributed in the study area with an extent of 115811 ha and least area was found to be covered under river and water body (4057.28 ha). This research work will be helpful for the policy makers for proper formulation and implementation of watershed developmental plans.


Atmosphere ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 669
Author(s):  
Abid Sarwar ◽  
Sajid Rashid Ahmad ◽  
Muhammad Ishaq Asif Rehmani ◽  
Muhammad Asif Javid ◽  
Shazia Gulzar ◽  
...  

The changing climate and global warming have rendered existing surface water insufficient, which is projected to adversely influence the irrigated farming systems globally. Consequently, groundwater demand has increased significantly owing to increasing population and demand for plant-based foods especially in South Asia and Pakistan. This study aimed to determine the potential areas for groundwater use for agriculture sector development in the study area Lower Dir District. ArcGIS 10.4 was utilized for geospatial analysis, which is referred to as Multi Influencing Factor (MIF) methodology. Seven parameters including land cover, geology, soil, rainfall, underground faults (liniment) density, drainage density, and slope, were utilized for delineation purpose. Considering relative significance and influence of each parameter in the groundwater recharge rating and weightage was given and potential groundwater areas were classified into very high, high, good, and poor. The result of classification disclosed that the areas of 113.10, 659.38, 674.68, and 124.17 km2 had very high, high, good, and poor potential for groundwater agricultural uses, respectively. Field surveys for water table indicated groundwater potentiality, which was high for Kotkay and Lalqila union councils having shallow water table. However, groundwater potentiality was poor in Zimdara, Khal, and Talash, characterized with a very deep water table. Moreover, the study effectively revealed that remote sensing and GIS could be developed as potent tools for mapping potential sites for groundwater utilization. Furthermore, MIF technique could be a suitable approach for delineation of groundwater potential zone, which can be applied for further research in different areas.


Forests ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 817
Author(s):  
Jesús Julio Camarero ◽  
Michele Colangelo ◽  
Antonio Gazol ◽  
Manuel Pizarro ◽  
Cristina Valeriano ◽  
...  

Windstorms are forest disturbances which generate canopy gaps. However, their effects on Mediterranean forests are understudied. To fill that research gap, changes in tree, cover, growth and soil features in Pinus halepensis and Pinus sylvestris plantations affected by windthrows were quantified. In each plantation, trees and soils in closed-canopy stands and gaps created by the windthrow were sampled. Changes in tree cover and radial growth were assessed by using the Normalized Difference Vegetation Index (NDVI) and dendrochronology, respectively. Soil features including texture, nutrients concentration and soil microbial community structure were also analyzed. Windthrows reduced tree cover and enhanced growth, particularly in the P. halepensis site, which was probably more severely impacted. Soil characteristics were also more altered by the windthrow in this site: the clay percentage increased in gaps, whereas K and Mg concentrations decreased. The biomass of Gram positive bacteria and actinomycetes increased in gaps, but the biomass of Gram negative bacteria and fungi decreased. Soil gaps became less fertile and dominated by bacteria after the windthrow in the P. halepensis site. We emphasize the relevance of considering post-disturbance time recovery and disturbance intensity to assess forest resilience within a multi-scale approach.


Sign in / Sign up

Export Citation Format

Share Document