scholarly journals PREVALENCE AND CHARACTERIZATION OF LISTERIA MONOCYTOGENES ISOLATED FROM DIFFERENT FOOD PRODUCTS

2011 ◽  
Vol 1 (1zero) ◽  
pp. 273
Author(s):  
A. Corda ◽  
M. P. Cogoni ◽  
R. Sabiu ◽  
S. Brignardello ◽  
A. Parisi ◽  
...  
Food Control ◽  
2018 ◽  
Vol 84 ◽  
pp. 436-441 ◽  
Author(s):  
Nadia Amajoud ◽  
Alexandre Leclercq ◽  
Jose M. Soriano ◽  
Hélène Bracq-Dieye ◽  
Mohammed El Maadoudi ◽  
...  

Foods ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1381
Author(s):  
Eman E. Abdeen ◽  
Walid S. Mousa ◽  
Ola. H. Harb ◽  
Gehad A. Fath-Elbab ◽  
Mohammed Nooruzzaman ◽  
...  

World Health Organization classified Listeria monocytogenes as a major notable foodborne pathogen associated with high mortality and hospitalization. The study reports the prevalence, antibiogram, virulence determination and genetic characterization of L. monocytogenes from different food products. A total of 250 food samples, fifty samples each from raw milk, ice cream, minced meat, fish fillet and sausage were collected from the Menoufiya governorate in Egypt. L. monocytogenes was detected in 17 (6.8%) of the tested food samples including minced meat (14%), fish fillet (8%), sausage (6%) and raw milk (6%). The antimicrobial susceptibility assay of 17 L. monocytogenes isolates against seventeen antibiotics belonging to eight antibiotics classes revealed a high susceptibility to norfloxacin (82.3%), amoxicillin-clavulanic acid (76.4%), cefotaxime (70.5%), erythromycin (64.6%), amoxicillin (64.6%), gentamicin (58.7%) and vancomycin (58.7%). While, high resistance was observed against oxytetracycline (76.4%), trimethoprim-sulfamethoxazole (76.4%), chloramphenicol (70.5%), doxycycline (64.6%), levofloxacin (41.2%) and azithromycin (41.2%). Of note, all L. monocytogenes isolates were multidrug-resistant. The multiplex PCR successfully amplified L. monocytogenes in all tested isolates. Screening of the five virulence-related genes revealed the hlyA and iap as the most prevalent genes followed by actA gene, however, the inlA and prfA genes were not detected in any of the studied isolates. The partial 16S rRNA gene sequencing of three L. monocytogenes isolates showed a high nucleotide similarity (99.1–99.8%) between the study isolates and various global clones, and phylogenetic analysis clustered these L. monocytogenes strains with other Listeria species including L. welshimeri, L. seeligeri and L. innocua. This study demonstrates the impact of L. monocytogenes as a major contaminant of various food products and suggests more attention to the awareness and hygienic measures in the food industry.


2012 ◽  
Vol 77 (4) ◽  
pp. M212-M216 ◽  
Author(s):  
Ping Wang ◽  
Hairong Yang ◽  
Yue Hu ◽  
Fei Yuan ◽  
Guiming Zhao ◽  
...  

Foods ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 801
Author(s):  
Kornelia Kaczmarska ◽  
Matthew Taylor ◽  
Udayasika Piyasiri ◽  
Damian Frank

Demand for plant-based proteins and plant-based food products is increasing globally. This trend is driven mainly by global population growth and a consumer shift towards more sustainable and healthier diets. Existing plant-based protein foods and meat mimetics often possess undesirable flavor and sensory properties and there is a need to better understand the formation of desirable meat-like flavors from plant precursors to improve acceptance of novel high-protein plant foods. This study aimed to comprehensively characterize the non-volatile flavor metabolites and the volatiles generated in grilled meat (beef, chicken, and pork) and compare these to commercially available meat substitutes and traditional high-protein plant-based foods (natto, tempeh, and tofu). Solid phase microextraction with gas-chromatography mass-spectrometry was used for elucidation of the flavor volatilome. Untargeted characterization of the non-volatile metabolome was conducted using Orbitrap mass spectrometry and Compound DiscovererTM datamining software. The study revealed greater diversity and higher concentrations of flavor volatiles in plant-based foods in comparison to grilled meat, although the odor activity of specific volatiles was not considered. On average, the total amount of volatiles in plant-based products were higher than in meat. A range of concentrations of free amino acids, dipeptide, tripeptides, tetrapeptides, nucleotides, flavonoids, and other metabolites was identified in meat and plant-based foods.


2011 ◽  
Vol 77 (18) ◽  
pp. 6559-6569 ◽  
Author(s):  
Edward M. Fox ◽  
Nola Leonard ◽  
Kieran Jordan

ABSTRACTThis study aimed to characterize physiological differences between persistent and presumed nonpersistentListeria monocytogenesstrains isolated at processing facilities and to investigate the molecular basis for this by transcriptomic sequencing. Full metabolic profiles of two strains, one persistent and one nonpersistent, were initially screened using Biolog's Phenotype MicroArray (PM) technology. Based on these results, in which major differences from selected antimicrobial agents were detected, another persistent strain and two nonpersistent strains were characterized using two antimicrobial PMs. Resistance to quaternary ammonium compounds (QACs) was shown to be higher among persistent strains. Growth of persistent and nonpersistent strains in various concentrations of the QACs benzethonium chloride (BZT) and cetylpyridinium chloride (CPC) was determined. Transcriptomic sequencing of a persistent and a presumed nonpersistent strain was performed to compare gene expression among these strains in the presence and absence of BZT. Two strains, designated “frequent persisters” because they were the most frequently isolated at the processing facility, showed overall higher resistance to QACs. Transcriptome analysis showed that BZT induced a complex peptidoglycan (PG) biosynthesis response, which may play a key role in BZT resistance. Comparison of persistent and nonpersistent strains indicated that transcription of many genes was upregulated among persistent strains. This included three gene operons:pdu,cob-cbi, andeut. These genes may play a role in the persistence ofL. monocytogenesoutside the human host.


2019 ◽  
Vol 79 ◽  
pp. 116-122 ◽  
Author(s):  
Ivana Zuber ◽  
Brankica Lakicevic ◽  
Ariane Pietzka ◽  
Dubravka Milanov ◽  
Vesna Djordjevic ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document