compare gene expression
Recently Published Documents


TOTAL DOCUMENTS

24
(FIVE YEARS 13)

H-INDEX

8
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Peng Ken Lim ◽  
Emilia E. Davey ◽  
Sean Wee ◽  
Wei Song Seetoh ◽  
Jong Ching Goh ◽  
...  

The bacterial kingdom comprises unicellular prokaryotes able to establish symbioses from mutualism to parasitism. To combat bacterial pathogenicity, we need an enhanced understanding of gene function and regulation, which will mediate the development of novel antimicrobials. Gene expression can predict gene function, but there lacks a database enabling expansive inter- and intraspecific exploration of gene expression profiles and co-expression networks for bacteria. To address this, we integrated the genomic and transcriptomic data of the 17 most notorious and studied bacterial pathogens, creating bacteria.guru, an interactive database that can identify, visualize, and compare gene expression profiles, co-expression networks, functionally enriched clusters, and gene families across species. Through illustrating antibiotic resistance mechanisms in P. aeruginosa, we demonstrate that bacteria.guru could potentially aid the discovery of multi-faceted antibiotic targets. Hence, we believe bacteria.guru will facilitate future bacterial research. Availability: The database and co-expression networks are freely available from https://bacteria.guru/. The sample annotations are found in the supplemental data.


2021 ◽  
Author(s):  
◽  
Yu Li ◽  

Candida glabrata is the second most common cause of invasive candidiasis. Intrinsic resistance has greatly limited the utility of the triazole antifungal, fluconazole, in the treatment of invasive fungal infection. The transcription factor Upc2 regulates the expression of sterol biosynthesis genes in yeast. Disrupting UPC2A in C. glabrata greatly increases its susceptibility to fluconazole (FLU) in both FLU-susceptible and -resistant clinical isolates. Therefore, the Upc2A and its target genes represent a potential pathway for overcoming FLU resistance in C. glabrata. We aimed to delineate the Upc2A regulon to determine its target genes involved in FLU resistance. Transcriptome sequencing (RNA-seq) analysis was used to compare gene expression profiles of: a) wild-type (WT) strains with and without UPC2A under non-stressed conditions; b) those same strains treated with three sterol biosynthesis inhibitors (SBIs; FLU, terbinafine, fenpropimorph); and c) strains with an activating mutation (GOF) in UPC2A. Global chromatin Immunoprecipitation (ChIP-seq) was used to identify genes whose promoters were bound by Upc2A in strains carrying WT and GOF alleles of Upc2A with and without fluconazole exposure. Only three genes (UPC2A, ERG25, and ERG3) were found to be downregulated in the absence of UPC2A. Sixteen genes were commonly upregulated in response to SBIs’ treatment in a Upc2A-dependent way, including ERG2, ERG3, and ERG11, the promoters of 10 of which were bound by Upc2A. A total of 15 genes were upregulated, including ERG2, ERG3, ERG25, and ERG11 in the strain containing GOF mutation and the promoters of 6 of these genes were bound by Upc2A. Based on our data, ERG3, ERG11, HEM13, and CAGL0H09592g (ScTIR1) could be potential targets of Upc2A in C. glabrata. This more comprehensive understanding of the Upc2A regulon in C. glabrata may eventually lead to strategies to overcome FLU resistance and enhance fluconazole activity against this important fungal pathogen.


2021 ◽  
Author(s):  
Dong Won Kim ◽  
Kamil Taneja ◽  
Thanh Hoang ◽  
Clayton Pio Santiago ◽  
Timothy James McCulley ◽  
...  

Purpose: Orbital fat hyperplasia has a central role in the manifestations of thyroid-associated orbitopathy (TAO). To better understand the pathways involved in adipogenesis in TAO, we have used transcriptomic methods to analyze gene expression in control and TAO patients, as well as in differentiating orbital fibroblasts (OFs). Methods: We performed bulk RNA sequencing (RNA-Seq) on intraconal orbital fat to compare gene expression in control and TAO patients. We treated cultured OFs derived from TAO patients with media containing dexamethasone, insulin, rosiglitazone, and isobutylmethylxanthine (IBMX) to induce adipogenesis. We used single nuclear RNA-Seq (snRNA-Seq) profiling of treated OFs to compare gene expression over time in order to identify pathways that are involved in orbital adipogenesis in vitro and compared the dynamic patterns of gene expression identify differences in gene expression in control and TAO orbital fat. Results: Orbital fat from TAO and control patients segregate with principal component analysis (PCA). Numerous signaling pathways are enriched in orbital fat isolated from TAO patients. SnRNA-Seq of orbital fibroblasts undergoing adipogenesis reveals differential expression of adipocyte-specific genes over the developmental time course. Furthermore, genes that are enriched in TAO orbital fat are also upregulated in orbital adipocytes that differentiate in vitro, while genes that are enriched in control orbital fat are enriched in orbital fibroblasts prior to differentiation. Conclusions: Differentiating orbital fibroblasts serve as a model to study orbital fat hyperplasia seen in TAO. We demonstrate that the insulin-like growth factor-1 receptor (IGF-1R) and Wnt signaling pathways are differentially expressed early in orbital adipogenesis.


2021 ◽  
Vol 5 (Supplement_1) ◽  
pp. A83-A83
Author(s):  
Åse Bjorvatn Sævik ◽  
Anette Wolff ◽  
Sigridur Björnsdottir ◽  
Katerina Simunkova ◽  
Martha S Hynne ◽  
...  

Abstract Objective: Deciding the optimal doses of glucocorticoid (GC) replacement treatment in autoimmune Addison’s disease (AAD) is impeded by the lack of reliable biomarkers. This frequently results in over-treatment, with alarming and persistent side-effects, or under-replacement, which could be fatal. There is a need to think new in the quest for robust biomarkers to optimize GC replacement in AAD at an individual level. Aim: We aimed to identify genes that are consistently up- or down-regulated in patients with AAD in response to different GC replacement doses. This information can be used to establish novel biomarkers to guide GC treatment in AAD. Methods: Step 1: Global microarray expression analysis on RNA from whole blood before and after intravenous infusion of 100 mg hydrocortisone (HC) in 10 patients with AAD. To verify the results, we performed real-time PCR to compare gene expression levels of three of the highly differentially expressed genes (FKBP5, MMP9, and DSIPI) to compare gene expression levels before and two, four, and six hours after the HC infusion. Step 2: Rt-PCR to compare expression levels of 93 GC-regulated genes in normal versus very low morning cortisol levels in 27 patients with AAD. Results: Step 1: Two hours after infusion of 100 mg HC, there was a marked increase in FKBP5, MMP9, and DSIPI expression levels. MMP9 and DSIPI expression levels correlated with serum cortisol. Step 2: Expression levels of CEBPB, DDIT4, FKBP5, DSIPI, and VDR were increased and ADARB1, ARIDB5, and POU2F1 decreased in normal versus very low morning cortisol. Normal serum cortisol levels positively correlated with DSIPI, DDIT4, and FKBP5 expression. Conclusions: We introduce gene expression as a novel approach to guide GC replacement in AAD. We suggest that gene expression of DSIPI, DDIT4, and FKBP5 are particularly promising candidate biomarkers of GC replacement, followed by MMP9, CEBPB, VDR, ADARB1, ARID5B, and POU2F1.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
So Yeong Cheon ◽  
Bon-Nyeo Koo ◽  
So Yeon Kim ◽  
Eun Hee Kam ◽  
Junhyun Nam ◽  
...  

AbstractPostoperative delirium is a common neuropsychiatric syndrome resulting a high postsurgical mortality rate and decline in postdischarge function. Extensive research has been performed on both human and animal delirium-like models due to their clinical significance, focusing on systematic inflammation and consequent neuroinflammation playing a key role in the pathogenesis of postoperative cognitive dysfunctions. Since animal models are widely utilized for pathophysiological study of neuropsychiatric disorders, this study aimed at examining the validity of the scopolamine-induced delirium-like mice model with respect to the neuroinflammatory hypothesis of delirium. Male C57BL/6 mice were treated with intraperitoneal scopolamine (2 mg/kg). Neurobehavioral tests were performed to evaluate the changes in cognitive functions, including learning and memory, and the level of anxiety after surgery or scopolamine treatment. The levels of pro-inflammatory cytokines (IL-1β, IL-18, and TNF-α) and inflammasome components (NLRP3, ASC, and caspase-1) in different brain regions were measured. Gene expression profiles were also examined using whole-genome RNA sequencing analyses to compare gene expression patterns of different mice models. Scopolamine treatment showed significant increase in the level of anxiety and impairments in memory and cognitive function associated with increased level of pro-inflammatory cytokines and NLRP3 inflammasome components. Genetic analysis confirmed the different expression patterns of genes involved in immune response and inflammation and those related with the development of the nervous system in both surgery and scopolamine-induced mice models. The scopolamine-induced delirium-like mice model successfully showed that analogous neuropsychiatric changes coincides with the neuroinflammatory hypothesis for pathogenesis of delirium.


2021 ◽  
Author(s):  
Weihao Dou ◽  
Yunheng Miao ◽  
Jinhua Xiao ◽  
Dawei Huang

Abstract Wolbachia is a genus of intracellular symbiotic bacteria that are widely distributed in arthropods and nematodes. These maternally inherited bacteria regulate host reproductive systems in various ways to facilitate their vertical transmission. Since the identification of Wolbachia in many insects, the relationship between Wolbachia and the host has attracted great interest. Numerous studies have indicated that Wolbachia modifies a variety of biological processes in the host. Previous studies in Drosophila melanogaster (D. mel) have demonstrated that Wolbachia can affect spermatid differentiation, chromosome deposition, and sperm activity in the early stages of spermatogenesis, leading to sperm dysfunction. Here, we explored the putative effect of Wolbachia in sperm maturation using transcriptomic approaches to compare gene expression in Wolbachia-infected and Wolbachia-free D. mel adult testes. Our findings show that Wolbachia affects many biological processes in D. mel adult testes, and most of the differentially expressed genes involved in carbohydrate metabolism, lysosomal degradation, proteolysis, lipid metabolism, and immune response were upregulated in the presence of Wolbachia. In contrast, some genes that are putatively associated with cutin and wax biosynthesis and peroxisome pathways were downregulated. We did not find any differentially expressed genes that are predicted to be related to spermatogenesis in the datasets. This work provides additional information for understanding the Wolbachia-host intracellular relationships.


2020 ◽  
Author(s):  
So Yeong Cheon ◽  
Bon-Nyeo Koo ◽  
So Yeon Kim ◽  
Eun Hee Kam ◽  
Junhyun Nam ◽  
...  

Abstract Postoperative delirium is a common neuropsychiatric syndrome resulting a high postsurgical mortality rate and decline in postdischarge function. Extensive research has been performed on both human and animal delirium models due to their clinical significance, focusing on systematic inflammation and consequent neuroinflammation playing a key role in the pathogenesis of postoperative cognitive dysfunctions. Since animal models are widely utilized for pathophysiological study of neuropsychiatric disorders, this study aimed at examining the validity of the scopolamine-induced delirium mice model with respect to the neuroinflammatory hypothesis of delirium. Male C57BL/6 mice were treated with intraperitoneal scopolamine (2 mg/kg). Neurobehavioral tests were performed to evaluate the changes in cognitive functions, including learning and memory, and the level of anxiety after surgery or scopolamine treatment. The levels of pro-inflammatory cytokines (IL-1ꞵ, IL-18, and TNF-α) and inflammasome components (NLRP3, ASC, and caspase-1) in different brain regions were measured. Gene expression profiles were also examined using whole-genome RNA sequencing analyses to compare gene expression patterns of different mice models.Scopolamine treatment showed significant increase in the level of anxiety and impairments in memory and cognitive function associated with increased level of pro-inflammatory cytokines and NLRP3 inflammasome components. Genetic analysis confirmed the different expression patterns of genes involved in immune response and inflammation and those related with the development of the nervous system in both surgery and scopolamine-induced mice models. The scopolamine-induced delirium mice model successfully showed that analogous neuropsychiatric changes coincides with the neuroinflammatory hypothesis for pathogenesis of delirium.


2020 ◽  
Author(s):  
So Yeong Cheon ◽  
Bon-Nyeo Koo ◽  
So Yeon Kim ◽  
Eun Hee Kam ◽  
Junhyun Nam ◽  
...  

Abstract BackgroundPostoperative delirium is a common neuropsychiatric syndrome resulting in a high postsurgical mortality rate and decline in postdischarge function. Extensive research has been performed on both human and animal delirium models due to their clinical significance, focusing on systemic inflammation and consequent neuroinflammation playing a key in the pathogenesis of postoperative cognitive dysfunctions. Since animal models are widely utilized for pathophysiological study of neuropsychiatric disorders, this study aimed at examining the validity of the scopolamine-induced delirium mice model with respect to the neuroinflammatory hypothesis of delirium. MethodsMale C57BL/6 mice were treated with intraperitoneal scopolamine (2 mg/kg). Neurobehavioural tests were performed to evaluate the changes in cognitive functions, including learning and memory, and the level of anxiety after surgery or scopolamine treatment. The levels of pro-inflammatory cytokines (IL-1ꞵ, IL-18, and TNF-α) and inflammasome components (NLRP3, ASC, and caspase-1) in different brain regions were measured. Gene expression profiles were also examined using whole-genome RNA sequencing analyses to compare gene expression patterns of different mice models.Results Scopolamine treatment showed significant increase in the level of anxiety and impairments in memory and cognitive function associated with increased level of pro-inflammatory cytokines and NLRP3 inflammasome components. Genetic analysis confirmed the different expression patterns of the genes involved in immune response and inflammation and those related with the development of the nervous system in both surgery and scopolamine-induced mice models. Conclusions The scopolamine-induced delirium mice model successfully showed that analogous neuropsychiatric changes coincide with the neuroinflammatory hypothesis for pathogenesis of delirium.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Guilherme Pinto Cauduro ◽  
Ana Lusia Leal ◽  
Tiago Falcón Lopes ◽  
Marcela Marmitt ◽  
Victor Hugo Valiati

Petroleum is the major energy matrix in the world whose refining generates chemical byproducts that may damage the environment. Among such waste, polycyclic aromatic hydrocarbons (PAH) are considered persistent pollutants. Sixteen of these are considered priority for remediation, and among them is benzo(a)pyrene. Amid remediation techniques, bioremediation stands out. The genus Burkholderia is amongst the microorganisms known for being capable of degrading persistent compounds; its strains are used as models to study such ability. High-throughput sequencing allows researchers to reach a wider knowledge about biodegradation by bacteria. Using transcripts and mRNA analysis, the genomic regions involved in this aptitude can be detected. To unravel these processes, we used the model B. vietnamiensis strain G4 in two experimental groups: one was exposed to benzo(a)pyrene and the other one (control) was not. Six transcriptomes were generated from each group aiming to compare gene expression and infer which genes are involved in degradation pathways. One hundred fifty-six genes were differentially expressed in the benzo(a)pyrene exposed group, from which 33% are involved in catalytic activity. Among these, the most significant genomic regions were phenylacetic acid degradation protein paaN, involved in the degradation of organic compounds to obtain energy; oxidoreductase FAD-binding subunit, related to the regulation of electrons within groups of dioxygenase enzymes with potential to cleave benzene rings; and dehydrogenase, described as accountable for phenol degradation. These data provide the basis for understanding the bioremediation of benzo(a)pyrene and the possible applications of this strain in polluted environments.


Sign in / Sign up

Export Citation Format

Share Document