scholarly journals Cyclophilin a as a Mediator of Tissue Injure and Nephrotoxicity

2012 ◽  
Vol 4 (2) ◽  
pp. 42-44
Author(s):  
Grace Moscoso-Solorzano ◽  
Gianna Mastroianni-Kirsztajn

Cyclophilin A (CypA) belongs to the peptidyl-prolil isomerase (PPlase) family of proteins and it is also known as the cellular receptor for cyclosporine A (CsA). CsA binds to CypA and inhibits the PPIase activity, but the CypA-CsA complex also binds to calcineurin that promotes the expression of genes encoding cytokines and other proteins required for immune response. In addition, the polymorphism variation of CypA promoter seems to have an influence on the expression of CypA in in vitro studies. CypA was also implicated in inflammatory processes (such as, among others, those observed in rheumatoid arthritis, atherosclerotic disease, nephrotoxicity) and it can be secreted by cells in response to inflammatory stimuli. CypA can also have a role in the molecular mechanisms by which CsA induces nephroxicity but these remain poorly understood. Recent studies suggest that CsA inhibition of CypA PPlase activity is a possible mechanism of this drug toxicity. In addition, CypA overexpression could be protective against CsA nephrotoxicity. Finally, the putative common mechanism by which CypA could be involved in CsA nephrotoxicity and tissue injury is related to its proinflammatory effects in cells.

2020 ◽  
Vol 64 (12) ◽  
Author(s):  
M. Biagi ◽  
D. Lamm ◽  
K. Meyer ◽  
A. Vialichka ◽  
M. Jurkovic ◽  
...  

ABSTRACT The intrinsic L1 metallo- and L2 serine-β-lactamases in Stenotrophomonas maltophilia make it naturally multidrug resistant and difficult to treat. There is a need to identify novel treatment strategies for this pathogen, especially against isolates resistant to first-line agents. Aztreonam in combination with avibactam has demonstrated potential, although data on other aztreonam–β-lactamase inhibitor (BLI) combinations are lacking. Additionally, molecular mechanisms for reduced susceptibility to these combinations have not been explored. The objectives of this study were to evaluate and compare the in vitro activities and to understand the mechanisms of resistance to aztreonam in combination with avibactam, clavulanate, relebactam, and vaborbactam against S. maltophilia. A panel of 47 clinical S. maltophilia strains nonsusceptible to levofloxacin and/or trimethoprim-sulfamethoxazole were tested against each aztreonam-BLI combination via broth microdilution, and 6 isolates were then evaluated in time-kill analyses. Three isolates with various aztreonam-BLI MICs were subjected to whole-genome sequencing and quantitative reverse transcriptase PCR. Avibactam restored aztreonam susceptibility in 98% of aztreonam-resistant isolates, compared to 61, 71, and 15% with clavulanate, relebactam, and vaborbactam, respectively. The addition of avibactam to aztreonam resulted in a ≥2-log10-CFU/ml decrease at 24 h versus aztreonam alone against 5/6 isolates compared to 1/6 with clavulanate, 4/6 with relebactam, and 2/6 with vaborbactam. Molecular analyses revealed that decreased susceptibility to aztreonam-avibactam was associated with increased expression of genes encoding L1 and L2, as well as the efflux pump (smeABC). Aztreonam-avibactam is the most promising BLI-combination against multidrug-resistant S. maltophilia. Decreased susceptibility may be due to the combination of overexpressed β-lactamases and efflux pumps. Further studies evaluating this combination against S. maltophilia are warranted.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Amber R Paulson ◽  
Maureen O’Callaghan ◽  
Xue-Xian Zhang ◽  
Paul B Rainey ◽  
Mark R H Hurst

Abstract The function of microbes can be inferred from knowledge of genes specifically expressed in natural environments. Here, we report the in vivo transcriptome of the entomopathogenic bacterium Yersinia entomophaga MH96, captured during initial, septicemic, and pre-cadaveric stages of intrahemocoelic infection in Galleria mellonella. A total of 1285 genes were significantly upregulated by MH96 during infection; 829 genes responded to in vivo conditions during at least one stage of infection, 289 responded during two stages of infection, and 167 transcripts responded throughout all three stages of infection compared to in vitro conditions at equivalent cell densities. Genes upregulated during the earliest infection stage included components of the insecticidal toxin complex Yen-TC (chi1, chi2, and yenC1), genes for rearrangement hotspot element containing protein yenC3, cytolethal distending toxin cdtAB, and vegetative insecticidal toxin vip2. Genes more highly expressed throughout the infection cycle included the putative heat-stable enterotoxin yenT and three adhesins (usher-chaperone fimbria, filamentous hemagglutinin, and an AidA-like secreted adhesin). Clustering and functional enrichment of gene expression data also revealed expression of genes encoding type III and VI secretion system-associated effectors. Together these data provide insight into the pathobiology of MH96 and serve as an important resource supporting efforts to identify novel insecticidal agents.


Cells ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 2002
Author(s):  
Maria Pilar Solis-Hernandez ◽  
Carla Martín ◽  
Beatriz García ◽  
Natalia Pérez-López ◽  
Yolanda García-Mesa ◽  
...  

Small leucine-rich proteoglycans (SLRPs) regulate different processes and undergo significant alterations in various diseases. Colon carcinomas (CCs) are heterogeneous pathologies with important clinical and molecular differences depending on their location, which makes it interesting to analyze the alterations in SLRPs in right- and left-sided tumors (RS- and LSCCs). SLRP transcription levels were studied in 32 CCs using qPCR compared to healthy colon mucosae samples from the same patients, 20 of them from LSCCs and the remaining 12 from RSCCs. Protein expression of genes with significant differences in their transcriptions was analyzed by immunohistochemistry. The alterations observed were related to survival data. The arrangement of transcription of SLRPs was quite similar in ascending and descending colon, but RS- and LSCCs displayed different patterns of alteration, with a greater number of deregulations occurring in the latter. The analysis of protein expression also indicated changes in the location of these molecules, largely moving to the cell interior. While podocan underexpression showed a trend toward better outcomes, no differences were observed in terms of overall survival. In vitro studies using the HT29 tumor cell line suggest that deregulation of SLRPs could affect cell proliferation. SLRPs constitute new differential markers of RS- and LSCCs, showing differences dependent on the anatomical location of the tumor.


2018 ◽  
Vol 35 (4) ◽  
pp. 413-422 ◽  
Author(s):  
Dominika Wcisło-Dziadecka ◽  
Joanna Gola ◽  
Beniamin Grabarek ◽  
Urszula Mazurek ◽  
Ligia Brzezińska-Wcisło ◽  
...  

Genetika ◽  
2014 ◽  
Vol 46 (1) ◽  
pp. 287-301 ◽  
Author(s):  
Biljana Bufan ◽  
Jasmina Djikic ◽  
Mirjana Nacka-Aleksic ◽  
Zorica Stojic-Vukanic ◽  
Mirjana Dimitrijevic ◽  
...  

Experimental autoimmune encephalomyelitis (EAE) is an animal model of multiple sclerosis, a prototype of Th1/Th17-mediated organ-specific autoimmune disease. In the rat, susceptibility to development of these diseases is shown to be strain-and age-dependent. In adult rats of distinct strains, it correlates with splenic dendritic cell (DC) subset composition, which also exhibit age-related changes. The aim of this study was to examine influence of aging on: i) Albino Oxford (relatively resistant to EAE) and Dark Agouti (susceptible to EAE) rat development of EAE and ii) their splenic conventional (OX62+) DC population in respect to its subset composition and expression of mRNAs for proinflammatory and immunosuppressive cytokines. We used 3month-old (young) and 26-month-old (aged) rats of AO and DA strain. The rats were immunized for EAE with rat spinal cord homogenate in complete Freund?s adjuvant and clinical course of the disease was followed. Fresh OX62+DCs were examined for the expression of CD4 (using flow cytometry) and genes encoding cytokines influencing DC activation/maturation (TNF-? and IL-6) using RT-PCR. Additionally, in vitro lipopolysaccharide (LPS) activated/matured DCs were examined for the expression of genes encoding cytokines controlling Th1/Th17 cell polarization using RT-PCR. With aging, AO rats became more susceptible, whereas DA rats largely lose their susceptibility to the induction of EAE. In AO rats aging shifted CD4+:CD4DC ratio towards CD4-cells, producing large amount of proinflammatory cytokines, whereas in DA rats CD4+:CD4-DC ratio remained stable with aging. In fresh DCs from rats of both the strains the expression of TNF-? mRNA increased with aging, whereas that of IL-6 mRNA decreased and increased in DCs from AO and DA rats, respectively. Following in vitro LPS stimulation OX62+ DCs from aged AO rats up-regulated the expression of mRNA for IL-23p19 (specific subunit of IL-23; crucial for sustained IL-17 production) and IL-1? (positive IL-17 regulator), whereas down-regulated the expression of IL-10 (negative IL-17 regulator) when compared with young strain-matched rats. In DA rats aging incresed IL-23p19 mRNA expression in LPS-stimulated DCs, whereas exerted the opposing effects on the expression of mRNAs for IL-10 and IL-1? compared to AO rats. Irrespective of the rat strain, aging did not influence mRNA expression for IL-12p35 (driving Th1 polarization) in DCs. Overall, results suggest role of changes in the expression of genes encoding proinflammatory and immunosuppressive cytokines in development of age-related alterations in rat susceptibility to EAE induction.


Genes ◽  
2018 ◽  
Vol 9 (7) ◽  
pp. 362 ◽  
Author(s):  
Monise Petrucelli ◽  
Kamila Peronni ◽  
Pablo Sanches ◽  
Tatiana Komoto ◽  
Josie Matsuda ◽  
...  

The dermatophyte Trichophyton rubrum is the major fungal pathogen of skin, hair, and nails that uses keratinized substrates as the primary nutrients during infection. Few strategies are available that permit a better understanding of the molecular mechanisms involved in the interaction of T. rubrum with the host because of the limitations of models mimicking this interaction. Dual RNA-seq is a powerful tool to unravel this complex interaction since it enables simultaneous evaluation of the transcriptome of two organisms. Using this technology in an in vitro model of co-culture, this study evaluated the transcriptional profile of genes involved in fungus-host interactions in 24 h. Our data demonstrated the induction of glyoxylate cycle genes, ERG6 and TERG_00916, which encodes a carboxylic acid transporter that may improve the assimilation of nutrients and fungal survival in the host. Furthermore, genes encoding keratinolytic proteases were also induced. In human keratinocytes (HaCat) cells, the SLC11A1, RNASE7, and CSF2 genes were induced and the products of these genes are known to have antimicrobial activity. In addition, the FLG and KRT1 genes involved in the epithelial barrier integrity were inhibited. This analysis showed the modulation of important genes involved in T. rubrum–host interaction, which could represent potential antifungal targets for the treatment of dermatophytoses.


2016 ◽  
Vol 44 (03) ◽  
pp. 595-615 ◽  
Author(s):  
Tao Yu ◽  
Man Hee Rhee ◽  
Jongsung Lee ◽  
Seung Hyung Kim ◽  
Yanyan Yang ◽  
...  

Korean Red Ginseng (KRG) is an herbal medicine prescribed worldwide that is prepared from Panax ginseng C.A. Meyer (Araliaceae). Out of ginseng’s various components, ginsenosides are regarded as the major ingredients, exhibiting anticancer and anti-inflammatory activities. Although recent studies have focused on understanding the anti-inflammatory activities of KRG, compounds that are major anti-inflammatory components, precisely how these can suppress various inflammatory processes has not been fully elucidated yet. In this study, we aimed to identify inhibitory saponins, to evaluate the in vivo efficacy of the saponins, and to understand the inhibitory mechanisms. To do this, we employed in vitro lipopolysaccharide-treated macrophages and in vivo inflammatory mouse conditions, such as collagen (type II)-induced arthritis (CIA), EtOH/HCl-induced gastritis, and lipopolysaccharide (LPS)/D-galactosamine (D-GalN)-triggered hepatitis. Molecular mechanisms were also verified by real-time PCR, immunoblotting analysis, and reporter gene assays. Out of all the ginsenosides, ginsenoside Rc (G-Rc) showed the highest inhibitory activity against the expression of tumor necrosis factor (TNF)-[Formula: see text], interleukin (IL)-1[Formula: see text], and interferons (IFNs). Similarly, this compound attenuated inflammatory symptoms in CIA, EtOH/HCl-mediated gastritis, and LPS/D-galactosamine (D-GalN)-triggered hepatitis without altering toxicological parameters, and without inducing gastric irritation. These anti-inflammatory effects were accompanied by the suppression of TNF-[Formula: see text] and IL-6 production and the induction of anti-inflammatory cytokine IL-10 in mice with CIA. G-Rc also attenuated the increased levels of luciferase activity by IRF-3 and AP-1 but not NF-[Formula: see text]B. In support of this phenomenon, G-Rc reduced TBK1, IRF-3, and ATF2 phosphorylation in the joint and liver tissues of mice with hepatitis. Therefore, our results strongly suggest that G-Rc may be a major component of KRG with useful anti-inflammatory properties due to its suppression of IRF-3 and AP-1 pathways.


Sign in / Sign up

Export Citation Format

Share Document