scholarly journals The Genes Encoding Small Leucine-Rich Proteoglycans Undergo Differential Expression Alterations in Colorectal Cancer, Depending on Tumor Location

Cells ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 2002
Author(s):  
Maria Pilar Solis-Hernandez ◽  
Carla Martín ◽  
Beatriz García ◽  
Natalia Pérez-López ◽  
Yolanda García-Mesa ◽  
...  

Small leucine-rich proteoglycans (SLRPs) regulate different processes and undergo significant alterations in various diseases. Colon carcinomas (CCs) are heterogeneous pathologies with important clinical and molecular differences depending on their location, which makes it interesting to analyze the alterations in SLRPs in right- and left-sided tumors (RS- and LSCCs). SLRP transcription levels were studied in 32 CCs using qPCR compared to healthy colon mucosae samples from the same patients, 20 of them from LSCCs and the remaining 12 from RSCCs. Protein expression of genes with significant differences in their transcriptions was analyzed by immunohistochemistry. The alterations observed were related to survival data. The arrangement of transcription of SLRPs was quite similar in ascending and descending colon, but RS- and LSCCs displayed different patterns of alteration, with a greater number of deregulations occurring in the latter. The analysis of protein expression also indicated changes in the location of these molecules, largely moving to the cell interior. While podocan underexpression showed a trend toward better outcomes, no differences were observed in terms of overall survival. In vitro studies using the HT29 tumor cell line suggest that deregulation of SLRPs could affect cell proliferation. SLRPs constitute new differential markers of RS- and LSCCs, showing differences dependent on the anatomical location of the tumor.

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Amber R Paulson ◽  
Maureen O’Callaghan ◽  
Xue-Xian Zhang ◽  
Paul B Rainey ◽  
Mark R H Hurst

Abstract The function of microbes can be inferred from knowledge of genes specifically expressed in natural environments. Here, we report the in vivo transcriptome of the entomopathogenic bacterium Yersinia entomophaga MH96, captured during initial, septicemic, and pre-cadaveric stages of intrahemocoelic infection in Galleria mellonella. A total of 1285 genes were significantly upregulated by MH96 during infection; 829 genes responded to in vivo conditions during at least one stage of infection, 289 responded during two stages of infection, and 167 transcripts responded throughout all three stages of infection compared to in vitro conditions at equivalent cell densities. Genes upregulated during the earliest infection stage included components of the insecticidal toxin complex Yen-TC (chi1, chi2, and yenC1), genes for rearrangement hotspot element containing protein yenC3, cytolethal distending toxin cdtAB, and vegetative insecticidal toxin vip2. Genes more highly expressed throughout the infection cycle included the putative heat-stable enterotoxin yenT and three adhesins (usher-chaperone fimbria, filamentous hemagglutinin, and an AidA-like secreted adhesin). Clustering and functional enrichment of gene expression data also revealed expression of genes encoding type III and VI secretion system-associated effectors. Together these data provide insight into the pathobiology of MH96 and serve as an important resource supporting efforts to identify novel insecticidal agents.


2018 ◽  
Vol 35 (4) ◽  
pp. 413-422 ◽  
Author(s):  
Dominika Wcisło-Dziadecka ◽  
Joanna Gola ◽  
Beniamin Grabarek ◽  
Urszula Mazurek ◽  
Ligia Brzezińska-Wcisło ◽  
...  

Genetika ◽  
2014 ◽  
Vol 46 (1) ◽  
pp. 287-301 ◽  
Author(s):  
Biljana Bufan ◽  
Jasmina Djikic ◽  
Mirjana Nacka-Aleksic ◽  
Zorica Stojic-Vukanic ◽  
Mirjana Dimitrijevic ◽  
...  

Experimental autoimmune encephalomyelitis (EAE) is an animal model of multiple sclerosis, a prototype of Th1/Th17-mediated organ-specific autoimmune disease. In the rat, susceptibility to development of these diseases is shown to be strain-and age-dependent. In adult rats of distinct strains, it correlates with splenic dendritic cell (DC) subset composition, which also exhibit age-related changes. The aim of this study was to examine influence of aging on: i) Albino Oxford (relatively resistant to EAE) and Dark Agouti (susceptible to EAE) rat development of EAE and ii) their splenic conventional (OX62+) DC population in respect to its subset composition and expression of mRNAs for proinflammatory and immunosuppressive cytokines. We used 3month-old (young) and 26-month-old (aged) rats of AO and DA strain. The rats were immunized for EAE with rat spinal cord homogenate in complete Freund?s adjuvant and clinical course of the disease was followed. Fresh OX62+DCs were examined for the expression of CD4 (using flow cytometry) and genes encoding cytokines influencing DC activation/maturation (TNF-? and IL-6) using RT-PCR. Additionally, in vitro lipopolysaccharide (LPS) activated/matured DCs were examined for the expression of genes encoding cytokines controlling Th1/Th17 cell polarization using RT-PCR. With aging, AO rats became more susceptible, whereas DA rats largely lose their susceptibility to the induction of EAE. In AO rats aging shifted CD4+:CD4DC ratio towards CD4-cells, producing large amount of proinflammatory cytokines, whereas in DA rats CD4+:CD4-DC ratio remained stable with aging. In fresh DCs from rats of both the strains the expression of TNF-? mRNA increased with aging, whereas that of IL-6 mRNA decreased and increased in DCs from AO and DA rats, respectively. Following in vitro LPS stimulation OX62+ DCs from aged AO rats up-regulated the expression of mRNA for IL-23p19 (specific subunit of IL-23; crucial for sustained IL-17 production) and IL-1? (positive IL-17 regulator), whereas down-regulated the expression of IL-10 (negative IL-17 regulator) when compared with young strain-matched rats. In DA rats aging incresed IL-23p19 mRNA expression in LPS-stimulated DCs, whereas exerted the opposing effects on the expression of mRNAs for IL-10 and IL-1? compared to AO rats. Irrespective of the rat strain, aging did not influence mRNA expression for IL-12p35 (driving Th1 polarization) in DCs. Overall, results suggest role of changes in the expression of genes encoding proinflammatory and immunosuppressive cytokines in development of age-related alterations in rat susceptibility to EAE induction.


2012 ◽  
Vol 4 (2) ◽  
pp. 42-44
Author(s):  
Grace Moscoso-Solorzano ◽  
Gianna Mastroianni-Kirsztajn

Cyclophilin A (CypA) belongs to the peptidyl-prolil isomerase (PPlase) family of proteins and it is also known as the cellular receptor for cyclosporine A (CsA). CsA binds to CypA and inhibits the PPIase activity, but the CypA-CsA complex also binds to calcineurin that promotes the expression of genes encoding cytokines and other proteins required for immune response. In addition, the polymorphism variation of CypA promoter seems to have an influence on the expression of CypA in in vitro studies. CypA was also implicated in inflammatory processes (such as, among others, those observed in rheumatoid arthritis, atherosclerotic disease, nephrotoxicity) and it can be secreted by cells in response to inflammatory stimuli. CypA can also have a role in the molecular mechanisms by which CsA induces nephroxicity but these remain poorly understood. Recent studies suggest that CsA inhibition of CypA PPlase activity is a possible mechanism of this drug toxicity. In addition, CypA overexpression could be protective against CsA nephrotoxicity. Finally, the putative common mechanism by which CypA could be involved in CsA nephrotoxicity and tissue injury is related to its proinflammatory effects in cells.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Niraj Shenoy

Abstract HIF1α has been termed a tumor-suppressor in clear cell renal cell carcinoma (ccRCC), primarily based on functional proliferation studies in cell lines (in vitro and in vivo) with genetic manipulation, and the adverse prognosis of 14q-deleted ccRCC patients. In other malignancies, however, HIF1α has an established tumor-promoting role. Therefore, this study sought to further examine the role of HIF1α in ccRCC using bioinformatic analyses of 530 ccRCC patients from The Cancer Genome Atlas (TCGA) and The Cancer Proteome Atlas (TCPA) registries. Although lower copy numbers of HIF1A (encoding HIF1α, located at 14q23.2) was associated with worse survival, there was no survival difference based on either HIF1A mRNA or HIF1α protein expression. Interestingly, L2HGDH (L-2-Hydroxyglutarate Dehydrogenase), a recently characterized epigenetic modulating ccRCC tumor-suppressor with a marked impact on survival, was found to be located only ~ 11.5Mbp from HIF1A on 14q (at 14q21.3). L2HGDH was therefore co-deleted in ~ 95% of 14q deletions involving HIF1A locus. Remarkably, HIF1A CNV had a markedly stronger correlation with L2HGDH expression (Rho = 0.55) than its own gene expression (Rho = 0.27), indicating high preserved-allele compensation of HIF1A. Genetic loss of HIF1A was therefore associated with a much greater reduction of L2HGDH gene expression than its own gene expression, providing a possible explanation for survival differences based on HIF1A CNV and mRNA expression. Furthermore, in 14q-deleted ccRCC patients with complete (uncensored) survival data, in the relatively rare cases where genetic loss of HIF1A occurred without genetic loss of L2HGDH (n = 5), the survival was significantly greater than where there was simultaneous genetic loss of both (n = 87) (mean survival 1670.8 ± 183.5 days vs 885.1 ± 78.4 days; p = 0.007). In addition, there was no correlation between HIF1A mRNA and HIF1α protein expression in ccRCC (R = 0.02), reflecting the primarily post-translational regulation of HIF1α. Lastly, even between L2HGDH and HIF1A loci, 14q was found to have several other yet-to-be-characterized potential ccRCC tumor-suppressors. Taken together, the data indicate that HIF1α is not a target of 14q deletion in ccRCC and that it is not a tumor-suppressor in this malignancy.


2013 ◽  
Vol 25 (1) ◽  
pp. 277
Author(s):  
K. R. L. Schwarz ◽  
M. R. Chiaratti ◽  
L. G. Mesquita ◽  
C. L. V. Leal

Nitric oxide is a chemical messenger generated by the activity of the enzyme NO synthase (NOS) and has been implicated in the control of oocyte maturation. Nitric oxide stimulates guanylate cyclase (GC) to produce cyclic guanosine monophosphate (cGMP), which in turn activates cGMP-dependent protein kinase (PKG) and some phosphodiesterases (PDE) that may interfere with cyclic adenosine monophosphate (cAMP) levels, a nucleotide also involved in meiosis resumption. In a previous study, we found that increasing NO levels in the presence of a NO donor (S-nitroso-N-acetylpenicillamine, SNAP) resulted in a delayed resumption of meiosis and a lower rate of germinal vesicle breakdown after 9 h of in vitro maturation. A temporary increase in cGMP levels was also observed with the same treatment, which was reversed by inhibiting GC activity with oxadiazolo-quinoxaline-one (ODQ; unpublished data). These results suggest that NO acted via GC/cGMP and that even a temporary increase in the cGMP level led to a delay of meiosis resumption. The aim of the present study was to determine the role played by NO on the expression of genes encoding for enzymes of the NO/GC/cGMP and cAMP pathways during the first 9 h of oocyte maturation. Cumulus–oocyte complexes were in vitro matured for 9 h in a semi-defined medium (TCM-199 + 3 mg mL–1 of BSA) with 10 to 7 M SNAP associated or not associated with 100 µM ODQ, a GC inhibitor. A group of oocytes incubated in the absence of inhibitors was considered the control. Total RNA was extracted from pools of 20 denuded oocytes with TRIzol (Life Technologies, Grand Island, NY, USA) and reverse transcribed into complementary DNA using a high-capacity reverse transcription kit (Applied Biosystems, Foster City, CA, USA). Quantitative PCR was performed by real-time PCR using SYBR Green (Applied Biosystems). The genes that had their expression measured pertained to one of the following groups: 1) genes encoding for enzymes that synthesise NO (NOS2 and NOS3); 2) genes involved in the control of cGMP levels (GUCY1B3 and PDE5A) or the enzymes activated by it (PKG1 and PKG2); or 3) genes involved in the control of cAMP levels (ADCY3, ADCY6, ADCY9, PDE3A, and PDE8A) or one of the enzymes activated by it (PKA1). GAPDH and PPIA were selected as housekeeping genes using qbasePLUS version 2.3 (Biogazelle, Zwijnaarde, Belgium). Data from 5 replicates were analysed using LinRegPCR version 11.1 and SAS version 9.2 (SAS Institute Inc., Cary, NC, USA). All genes were found to be expressed in the three experimental groups; however, a significant difference in gene expression levels was not found among groups. Results suggest that NO does not act on oocyte maturation by affecting the expression of the investigated genes in oocytes. To our knowledge, this is the first report to demonstrate the expression of the ADCY3, ADCY6, and ADCY9 genes in bovine oocytes. Further research is in progress to study the effect of the SNAP treatment on the expression of these genes in cumulus cells. Financial support from FAPESP 2010/18023-9.


1999 ◽  
Vol 19 (3) ◽  
pp. 2044-2050 ◽  
Author(s):  
Seok Hee Park ◽  
Sang Seok Koh ◽  
Jae Hwan Chun ◽  
Hye Jin Hwang ◽  
Hyen Sam Kang

ABSTRACT Expression of genes encoding starch-degrading enzymes is regulated by glucose repression in the yeast Saccharomyces cerevisiae. We have identified a transcriptional repressor, Nrg1, in a genetic screen designed to reveal negative factors involved in the expression of STA1, which encodes a glucoamylase. TheNRG1 gene encodes a 25-kDa C2H2zinc finger protein which specifically binds to two regions in the upstream activation sequence of the STA1 gene, as judged by gel retardation and DNase I footprinting analyses. Disruption of theNRG1 gene causes a fivefold increase in the level of theSTA1 transcript in the presence of glucose. The expression of NRG1 itself is inhibited in the absence of glucose. DNA-bound LexA-Nrg1 represses transcription of a target gene 10.7-fold in a glucose-dependent manner, and this repression is abolished in bothssn6 and tup1 mutants. Two-hybrid and glutathione S-transferase pull-down experiments show an interaction of Nrg1 with Ssn6 both in vivo and in vitro. These findings indicate that Nrg1 acts as a DNA-binding repressor and mediates glucose repression of the STA1 gene expression by recruiting the Ssn6-Tup1 complex.


Sign in / Sign up

Export Citation Format

Share Document