scholarly journals A fine-grained bird Atlas as tool for spatial monitoring: a case study from a remnant wetland during the breeding period (Torre Flavia, central Italy)

2020 ◽  
Vol 90 (1) ◽  
Author(s):  
Corrado Battisti ◽  
Giuseppe Dodaro ◽  
Mario Vannuccini

During the 2019 breeding period we carried out a bird atlas for a small coastal natural reserve (Torre Flavia wetland, Special Protection Area IT6030020, central Italy), comparing quantitative data of spatial occurrences with records from an analogous study carried out in 2005. From 2005 to 2019 some water-related species increased their frequency of occurrence (Fulica atra, significantly). Among the reed and rush-bed species, Acrocephalus scirpaceus spatially increased and Cisticola juncidis decreased significantly. Among ecotonal, synanthropic and open habitat species, we registered a significant increase of Chloris chloris. A decreasing trend of Passer italiae, Saxicola torquatus, Emberiza calandra, although not significant, may be probably linked to regional or continental factors. Both causes at local (reedbed expansion, rushbed reduction, water-level management) and at larger scale (decline in their continental range) can explain the observed changes in spatial occurrences during this medium-long temporal range. Local atlases can be quick tools useful to drive management strategies in remnant wetlands.

2021 ◽  
Author(s):  
Lorenzo Vergni ◽  
Francesca Todisco

<p>As many other natural hazards, the crop water stress has a typical multivariate nature, i.e., it is characterized by the contemporary presence of multiple characteristics correlated with each other (e.g., duration, severity, peak, areal extension, etc.). In this situation, a risk analysis based on a traditional univariate approach is inadequate for a complete interpretation of the phenomenon. Copula models can effectively solve the probabilistic joint analysis of two or more random correlated variables. Copulas are functions that join univariate probability distributions to form multivariate probability distributions, modelling the dependence structure among random variables independently of their marginal distributions. This work illustrates how the joint probability and return periods of the Duration (D, days) and Severity (S, mm) of the crop water stress can be used to obtain information useful in defining drought management strategies. The case study refers to some localities of central Italy and olive crops, widely cultivated in the region considered, mainly under rainfed conditions. In the case study, 65 years of daily precipitation and maximum and minimum temperature were used to obtain a rough estimation (following the FAO 56 guidelines) of the daily soil water dynamics (SWt), available for the olive crops at each locality considered. Then, by applying the Theory of Runs to SWt, with a threshold equal to the crop critical point (SWcrit), the water stress events were identified and characterized by their D (days) and S (i.e., the cumulative evapotranspiration deficit, mm) for each locality. A 2-parameter Gamma distribution was fitted to both D and S, whilst a Frank copula modelled their dependence structure. These joint probability models were then used to quantify the return periods associated with specific user-defined critical threshold events; in this work, the critical threshold events were simply defined on the basis of a statistical approach (e.g., combining the values of D and S corresponding to the 90<sup>th</sup> percentiles). However, in a real case application, the critical thresholds could arise from considerations on the crop impacts deriving from specific D and S values. Despite the modest areal extension of the case study, results show that the climatic conditions significantly affect the bivariate return period of the critical threshold events, which varies between 3 and 15 years in the localities considered. We also evaluated the return time increment due to some drought management strategies, such as the application of rescue irrigation. For example, the application of an irrigation volume of 50 mm in the mid of the growing season is able to produce a relevant change of the return period, thus varies between 5 and 77 years.</p><p> </p>


1991 ◽  
Vol 24 (6) ◽  
pp. 25-33
Author(s):  
A. J. Jakeman ◽  
P. G. Whitehead ◽  
A. Robson ◽  
J. A. Taylor ◽  
J. Bai

The paper illustrates analysis of the assumptions of the statistical component of a hybrid modelling approach for predicting environmental extremes. This shows how to assess the applicability of the approach to water quality problems. The analysis involves data on stream acidity from the Birkenes catchment in Norway. The modelling approach is hybrid in that it uses: (1) a deterministic or process-based description to simulate (non-stationary) long term trend values of environmental variables, and (2) probability distributions which are superimposed on the trend values to characterise the frequency of shorter term concentrations. This permits assessment of management strategies and of sensitivity to climate variables by adjusting the values of major forcing variables in the trend model. Knowledge of the variability about the trend is provided by: (a) identification of an appropriate parametric form of the probability density function (pdf) of the environmental attribute (e.g. stream acidity variables) whose extremes are of interest, and (b) estimation of pdf parameters using the output of the trend model.


Forests ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 267
Author(s):  
Lydia Olander ◽  
Katie Warnell ◽  
Travis Warziniack ◽  
Zoe Ghali ◽  
Chris Miller ◽  
...  

A shared understanding of the benefits and tradeoffs to people from alternative land management strategies is critical to successful decision-making for managing public lands and fostering shared stewardship. This study describes an approach for identifying and monitoring the types of resource benefits and tradeoffs considered in National Forest planning in the United States under the 2012 Planning Rule and demonstrates the use of tools for conceptualizing the production of ecosystem services and benefits from alternative land management strategies. Efforts to apply these tools through workshops and engagement exercises provide opportunities to explore and highlight measures, indicators, and data sources for characterizing benefits and tradeoffs in collaborative environments involving interdisciplinary planning teams. Conceptual modeling tools are applied to a case study examining the social and economic benefits of recreation on the Ashley National Forest. The case study illustrates how these types of tools facilitate dialog for planning teams to discuss alternatives and key ecosystem service outcomes, create easy to interpret visuals that map details in plans, and provide a basis for selecting ecosystem service (socio-economic) metrics. These metrics can be used to enhance environmental impact analysis, and help satisfy the goals of the National Environmental Policy Act (NEPA), the 2012 Planning Rule, and shared stewardship initiatives. The systematic consideration of ecosystem services outcomes and metrics supported by this approach enhanced dialog between members of the Forest planning team, allowed for a more transparent process in identification of key linkages and outcomes, and identified impacts and outcomes that may not have been apparent to the sociologist who is lacking the resource specific expertise of these participants. As a result, the use of the Ecosystem Service Conceptual Model (ESCM) process may result in reduced time for internal reviews and greater comprehension of anticipated outcomes and impacts of proposed management in the plan revision Environmental Impact Statement amongst the planning team.


2021 ◽  
Vol 13 (11) ◽  
pp. 6478
Author(s):  
Amemarlita Matos ◽  
Laura Barraza ◽  
Isabel Ruiz-Mallén

This study is based on ethnographic research that analyzes how traditional knowledge and local beliefs on biodiversity conservation relates to the local ability to adapt and be resilient to climatic changes in two communities around Gorongosa National Park, Mozambique: Nhanfisse in the buffer zone and Muanandimae in the core area. A total of 78 semi-structured interviews with heads of households were conducted. We found that both communities carried out practices and held beliefs associated with conservation, such as protecting trees and animal species considered sacred or perceived as beneficial for human life in terms of water provision and agricultural production. In addition to traditional ceremonies that respond to extreme climatic events such as drought and flood, other adaptation strategies used by the communities include moving to neighboring areas in search of better living conditions and using forest products in times of scarcity. We discuss that the management of the park should be agreed on, in a shared way, between local communities and conservation agents to ensure that these areas continue to perform the ecological, subsistence, and spiritual functions required. Our research results contribute to a better understanding of local adaptation dynamics towards extreme climatic events and improvement of management strategies.


Food Control ◽  
2021 ◽  
Vol 125 ◽  
pp. 107964
Author(s):  
Daniele Castiglione ◽  
Lisa Guardone ◽  
Francesca Susini ◽  
Federica Alimonti ◽  
Valeria Paternoster ◽  
...  

Water ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 219 ◽  
Author(s):  
Antonio-Juan Collados-Lara ◽  
David Pulido-Velazquez ◽  
Rosa María Mateos ◽  
Pablo Ezquerro

In this work, we developed a new method to assess the impact of climate change (CC) scenarios on land subsidence related to groundwater level depletion in detrital aquifers. The main goal of this work was to propose a parsimonious approach that could be applied for any case study. We also evaluated the methodology in a case study, the Vega de Granada aquifer (southern Spain). Historical subsidence rates were estimated using remote sensing techniques (differential interferometric synthetic aperture radar, DInSAR). Local CC scenarios were generated by applying a bias correction approach. An equifeasible ensemble of the generated projections from different climatic models was also proposed. A simple water balance approach was applied to assess CC impacts on lumped global drawdowns due to future potential rainfall recharge and pumping. CC impacts were propagated to drawdowns within piezometers by applying the global delta change observed with the lumped assessment. Regression models were employed to estimate the impacts of these drawdowns in terms of land subsidence, as well as to analyze the influence of the fine-grained material in the aquifer. The results showed that a more linear behavior was observed for the cases with lower percentage of fine-grained material. The mean increase of the maximum subsidence rates in the considered wells for the future horizon (2016–2045) and the Representative Concentration Pathway (RCP) scenario 8.5 was 54%. The main advantage of the proposed method is its applicability in cases with limited information. It is also appropriate for the study of wide areas to identify potential hot spots where more exhaustive analyses should be performed. The method will allow sustainable adaptation strategies in vulnerable areas during drought-critical periods to be assessed.


2009 ◽  
Vol 90 (11) ◽  
pp. 3607-3615 ◽  
Author(s):  
Paolo C. Campo ◽  
Guillermo A. Mendoza ◽  
Philippe Guizol ◽  
Teodoro R. Villanueva ◽  
François Bousquet

Sign in / Sign up

Export Citation Format

Share Document