scholarly journals Vitrinite reflectance (Ro) of dispersed organic matter from Husky/Bow Valley et al North Ben Nevis P-93

2001 ◽  
Author(s):  
M P Avery
Minerals ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 310 ◽  
Author(s):  
Dimitrios Rallakis ◽  
Raymond Michels ◽  
Marc Brouand ◽  
Olivier Parize ◽  
Michel Cathelineau

The Zoovch Ovoo uranium deposit is located in East Gobi Basin in Mongolia. It is hosted in the Sainshand Formation, a Late Cretaceous siliciclastic reservoir, in the lower part of the post-rift infilling of the Mesozoic East Gobi Basin. The Sainshand Formation corresponds to poorly consolidated medium-grained sandy intervals and clay layers deposited in fluvial-lacustrine settings. The uranium deposit is confined within a 60- to 80-m-thick siliciclastic reservoir inside aquifer driven systems, assimilated to roll-fronts. As assessed by vitrinite reflectance (%Rr < 0.4) and molecular geochemistry, the formation has never experienced significant thermal maturation. Detrital organic matter (type III and IV kerogens) is abundant in the Zoovch Ovoo depocenter. In this framework, uranium occurs as: (i) U-rich macerals without any distinguishable U-phase under SEM observation, containing up to 40 wt % U; (ii) U expressed as UO2 at the rims of large (several millimeters) macerals and (iii) U oxides partially to entirely replacing macerals, while preserving the inherited plant texture. Thus, uranium is accumulated gradually in the macerals through an organic carbon–uranium epigenization process, in respect to the maceral’s chemistry and permeability. Most macerals are rich in S and, to a lesser extent, in Fe. Frequently, Fe and S contents do not fit the stoichiometry of pyrite, although pyrite also occurs as small inclusions within the macerals. The organic matter appears thus as a major redox trap for uranium in this kind of geological setting.


2021 ◽  
Author(s):  
Shahin Khosrov Akhundov ◽  
Mushfig Farhad Tagiyev ◽  
Arastun Ismail Khuduzade ◽  
Natig Namig Aliyev

Abstract Meso-Cenozoic sedimentary cover in the Middle Kura depression located between the Greater and Lesser Caucasus mountain structures contains numerous oil accumulations. According to studies in the Cretaceous and Paleogene strata, sedimentary organic matter is of mixed clastic-marine origin. Moderate amounts of organic matter have been recorded in the Eocene sediments (on average 0.70%), in the Upper and Lower Cretaceous average values made up 0.39% и 0.42%, respectively. Analysis of bitumoid composition suggests that in a number of areas bitumoids have experienced a widespread movement across the sedimentary strata. The results of measurements on isolated samples indicate that the Cretaceous strata have only advanced to the initial hard-coal stage of organic transformation (0.48-0.55%Ro). On vitrinite reflectance data the Eocene deposits in studied areas of the Middle Kura depression have reached initial (brown-coal) stage of catagenetic transformation (±0.48Ro%; est. paleotemperature of 85°C). Nonetheless, analysis of formation conditions of commercial HC accumulations found earlier in the Eocene strata allows considering them the most prospective in the Middle Kura depression.


2013 ◽  
Vol 868 ◽  
pp. 121-124 ◽  
Author(s):  
Jun Yuan ◽  
Yan Bin Wang ◽  
Xin Zhang ◽  
Jing Jing Fan ◽  
Pei Xue

The Shanxi and Taiyuan formations in Permo-Carboniferous of upper Paleozoic Erathem of Qinshui Basin, not only has abundant coal and CBM resources, also has a lot of shales. By analyzing the shale thickness, organic matter type, organic matter abundance, vitrinite reflectance, mineral composition of the Permo-Carboniferous coal-bearing strata, considered that the shale thickness of coal-bearing strata in the Qinshui Basin is larger, the organic matter abundance is general, but maturity is high and full of rich brittle mineral. It is in favor of late fracturing.


2013 ◽  
Vol 2 (1) ◽  
pp. 82-90
Author(s):  
Justyna Smolarek ◽  
Leszek Marynowski

ABSTRACT Aromatic hydrocarbons are present in the fossil wood samples in relatively small amounts. In almost all of the tested samples the dominating aromatic hydrocarbon is perylene and its methyl and dimethyl derivatives. The most important biomarkers present in the aromatic fraction are dehydroabietane, siomonellite and retene, compounds characteristic for conifers. The distribution of discussed compounds is highly variable due to such early diagenetic processes affecting the wood as oxidation and the activity of microorganisms. MPI1 parameter values (methylphenanthrene index) for the majority of the samples are in the range of 0.1 to 0.5, which results in the highly variable values of Rc (converted value of vitrinite reflectance) ranging from 0.45 to 0.70%. Such values suggest that MPI1 parameter is not useful as maturity parameter in case of Middle Jurassic ore-bearing clays, even if measured strictly on terrestrial organic matter (OM). As a result of weathering processes (oxidation) the distribution of aromatic hydrocarbons changes. In the oxidized samples the amount of aromatic hydrocarbons, both polycyclic as well as aromatic biomarkers decreases.


2003 ◽  
Vol 43 (1) ◽  
pp. 117 ◽  
Author(s):  
C.J. Boreham ◽  
J.E. Blevin ◽  
A.P. Radlinski ◽  
K.R. Trigg

Only a few published geochemical studies have demonstrated that coals have sourced significant volumes of oil, while none have clearly implicated coals in the Australian context. As part of a broader collaborative project with Mineral Resources Tasmania on the petroleum prospectivity of the Bass Basin, this geochemical study has yielded strong evidence that Paleocene–Eocene coals have sourced the oil and gas in the Yolla, Pelican and Cormorant accumulations in the Bass Basin.Potential oil-prone source rocks in the Bass Basin have Hydrogen Indices (HIs) greater than 300 mg HC/g TOC. The coals within the Early–Middle Eocene succession commonly have HIs up to 500 mg HC/g TOC, and are associated with disseminated organic matter in claystones that are more gas-prone with HIs generally less than 300 mg HC/g TOC. Maturity of the coals is sufficient for oil and gas generation, with vitrinite reflectance (VR) up to 1.8 % at the base of Pelican–5. Igneous intrusions, mainly within Paleocene, Oligocene and Miocene sediments, produced locally elevated maturity levels with VR up to 5%.The key events in the process of petroleum generation and migration from the effective coaly source rocks in the Bass Basin are:the onset of oil generation at a VR of 0.65% (e.g. 2,450 m in Pelican–5);the onset of oil expulsion (primary migration) at a VR of 0.75% (e.g. 2,700–3,200 m in the Bass Basin; 2,850 m in Pelican–5);the main oil window between VR of 0.75 and 0.95% (e.g. 2,850–3,300 m in Pelican–5); and;the main gas window at VR >1.2% (e.g. >3,650 m in Pelican–5).Oils in the Bass Basin form a single oil population, although biodegradation of the Cormorant oil has resulted in its statistical placement in a separate oil family from that of the Pelican and Yolla crudes. Oil-to-source correlations show that the Paleocene–Early Eocene coals are effective source rocks in the Bass Basin, in contrast to previous work, which favoured disseminated organic matter in claystone as the sole potential source kerogen. This result represents the first demonstrated case of significant oil from coal in the Australian context. Natural gases at White Ibis–1 and Yolla–2 are associated with the liquid hydrocarbons in their respective fields, although the former gas is generated from a more mature source rock.The application of the methodologies used in this study to other Australian sedimentary basins where commercial oil is thought to be sourced from coaly kerogens (e.g. Bowen, Cooper and Gippsland basins) may further implicate coal as an effective source rock for oil.


2020 ◽  
Vol 10 (8) ◽  
pp. 3191-3206
Author(s):  
Olusola J. Ojo ◽  
Ayoola Y. Jimoh ◽  
Juliet C. Umelo ◽  
Samuel O. Akande

Abstract The Patti Formation which consists of sandstone and shale offers the best potential source beds in the Bida Basin. This inland basin is one of the basins currently being tested for hydrocarbon prospectivity in Nigeria. Fresh samples of shale from Agbaja borehole, Ahoko quarry and Geheku road cut were analysed using organic geochemical and palynological techniques to unravel their age, paleoecology, palynofacies and source bed hydrocarbon potential. Palynological data suggest Maastrichtian age for the sediments based on the abundance of microfloral assemblage; Retidiporites magdalenensis, Echitriporites trianguliformis and Buttinia andreevi. Dinocysts belonging to the Spiniferites, Deflandrea and Dinogymnium genera from some of the analysed intervals are indicative of freshwater swamp and normal sea conditions. Palynological evidence further suggests mangrove paleovegetation and humid climate. Relatively high total organic carbon TOC (0.77–8.95 wt%) was obtained for the shales which implies substantial concentration of organic matter in the source beds. Hydrocarbon source rock potential ranges from 0.19 to 0.70 mgHC/g.rock except for a certain source rock interval in the Agbaja borehole with high yield of 25.18 mgHC/g.rock. This interval also presents exceptionally high HI of 274 mgHC/g.TOC and moderate amount of amorphous organic matter. The data suggests that in spite of the favourable organic matter quantity, the thermal maturity is low as indicated by vitrinite reflectance and Tmax (0.46 to 0.48 Ro% and 413 to 475 °C, respectively). The hydrocarbon extracts show abundance of odd number alkanes C27–C33, low sterane/hopane ratio and Pr/Ph > 2. We conclude that the source rocks were terrestrially derived under oxic condition and dominated by type III kerogen. Type II organic matter with oil and gas potential is a possibility in Agbaja area of Bida Basin. Thermal maturity is low and little, or no hydrocarbon has been generated from the source rocks.


Author(s):  
Magdalena Sikorska-Jaworowska

Petrologic investigations of Upper Cambrian and Tremadocian deposits were carried out in the Narol region (southern Lublin region) in prospecting for shale gas accumulations. The observations and analyses were made using a polarizing microscope, luminoscope (CL) and scanning microscope (BSE, SE, EDS, SEM-CL). The following analyses were performed: CL-spectral analysis of quartz, X-ray structural analysis of clay fraction, and pyrolytic analysis of organic matter. The rocks under study are represented mainly by clay-silt shales with sandy interbeds. They belong to the epicontinental siliciclastic association deposited on an extensive shelf subjected to tidal and storm action. The shales consist largely of illite, and the silt fraction is represented by quartz with a small admixture of feldspars. Quartz cement is common (growths and aggregates of authigenic quartz), while carbonate cement (calcite, Fe-dolomite/ ankerite and siderite), as well as pyrite, kaolinite and phosphate cements are rare. The shales reveal microporosity in the form of “microchannels” paralleling illite plates, and within mica packets. The micropores (1–2 µm in size) are observed in both the carbonate cement and organic matter. As a result of deep burial and intense diagenetic processes, the organic matter has undergone strong alteration (max. Ro = 2.5%). The vitrinite reflectance index and pyrolitic analysis of organic matter, as well as the highly ordered illite structure, indicate the maximum palaeotemperatures in the range of 120–150°C. The rocks show numerous fractures healed with carbonates and/or quartz. Some of the fractures that run parallel to the lamination (or more rarely those running perpendicular or at a high angle) have remained open and are potential pathways of hydrocarbon migration. Pyrolytic analysis shows that the shales do not represent source rocks. It is supposed that they do not represent reservoirs for unconventional hydrocarbon accumulations.


Sign in / Sign up

Export Citation Format

Share Document