quartz cement
Recently Published Documents


TOTAL DOCUMENTS

64
(FIVE YEARS 12)

H-INDEX

16
(FIVE YEARS 2)

Author(s):  
Muhammad KASHIF ◽  
Yingchang CAO ◽  
Nizam ud DIN ◽  
Uzair SIDDIQUE ◽  
Kelai XI ◽  
...  

Author(s):  
José M. Carcione ◽  
Davide Gei ◽  
Stefano Picotti ◽  
Ayman Qadrouh ◽  
Mamdoh Alajmi ◽  
...  

We simulate the effects of diagenesis, cementation and compaction on the elastic properties of shales and sandstones with four different petro-elastical theories and a basin-evolution model, based on constant heating and sedimentation rates. We consider shales composed of clay minerals, mainly smectite and illite, depending on the burial depth, and the pore space is assumed to be saturated with water at hydrostatic conditions. Diagenesis in shale (smectite/illite transformation here) as a function of depth is described by a 5th-order kinetic equation, based on an Arrhenius reaction rate. On the other hand, quartz cementation in sandstones is based on a model that estimates the volume of precipitated quartz cement and the resulting porosity loss from the temperature history, using an equation relating the precipitation rate to temperature. Effective pressure effects (additional compaction) are accounted for by using Athy equation and the Hertz-Mindlin model. The petro-elastic models yield similar seismic velocities, despite the different level of complexity and physics approaches, with increasing density and seismic velocities as a function of depth. The methodology provides a simple procedure to obtain the velocity of shales and sandstones versus temperature and pressure due to the diagenesis-cementation-compaction process.


2021 ◽  
Vol 118 (40) ◽  
pp. e2105707118
Author(s):  
Stefan Bengtson ◽  
Birger Rasmussen ◽  
Jian-Wei Zi ◽  
Ian R. Fletcher ◽  
James G. Gehling ◽  
...  

The Paleoproterozoic (1.7 Ga [billion years ago]) metasedimentary rocks of the Mount Barren Group in southwestern Australia contain burrows indistinguishable from ichnogenera Thalassinoides, Ophiomorpha, Teichichnus, and Taenidium, known from firmgrounds and softgrounds. The metamorphic fabric in the host rock is largely retained, and because the most resilient rocks in the sequence, the metaquartzites, are too hard for animal burrowing, the trace fossils have been interpreted as predating the last metamorphic event in the region. Since this event is dated at 1.2 Ga, this would bestow advanced animals an anomalously early age. We have studied the field relationships, petrographic fabric, and geochronology of the rocks and demonstrate that the burrowing took place during an Eocene transgression over a weathered regolith. At this time, the metaquartzites of the inundated surface had been weathered to friable sandstones or loose sands (arenized), allowing for animal burrowing. Subsequent to this event, there was a resilicification of the quartzites, filling the pore space with syntaxial quartz cement forming silcretes. Where the sand grains had not been dislocated during weathering, the metamorphic fabric was seemingly restored, and the rocks again assumed the appearance of hard metaquartzites impenetrable to animal burrowing.


2021 ◽  
Author(s):  
CLAUDIA COLEINE ◽  
MANUEL DELGADO BAQUERIZO ◽  
Andrea Zerboni ◽  
Benedetta Turchetti ◽  
Pietro Buzzini ◽  
...  

Antarctic deserts are among the driest and coldest ecosystems of the planet; there, some microbes hang on to life under these extreme conditions inside porous rocks, forming the so-called endolithic communities. Yet, the contribution of distinct rock traits to support complex microbial assemblies remains poorly determined. Here, we combined an extensive Antarctic rock survey with rock microbiome sequencing and ecological networks, and found that contrasting combinations of microclimatic and rock traits such as thermal inertia, porosity, iron concentration and quartz cement can help explain the multiple complex and independent microbial assemblies found in Antarctic rocks. Our work highlights the pivotal role of rocky substrate heterogeneity in sustaining contrasting groups of microorganisms, which is essential to understand life at the edge on Earth, and for searching life on other rocky planets such as Mars.


PLoS ONE ◽  
2021 ◽  
Vol 16 (8) ◽  
pp. e0254760
Author(s):  
David J. Nash ◽  
T. Jake R. Ciborowski ◽  
Timothy Darvill ◽  
Mike Parker Pearson ◽  
J. Stewart Ullyott ◽  
...  

Little is known of the properties of the sarsen stones (or silcretes) that comprise the main architecture of Stonehenge. The only studies of rock struck from the monument date from the 19th century, while 20th century investigations have focussed on excavated debris without demonstrating a link to specific megaliths. Here, we present the first comprehensive analysis of sarsen samples taken directly from a Stonehenge megalith (Stone 58, in the centrally placed trilithon horseshoe). We apply state-of-the-art petrographic, mineralogical and geochemical techniques to two cores drilled from the stone during conservation work in 1958. Petrographic analyses demonstrate that Stone 58 is a highly indurated, grain-supported, structureless and texturally mature groundwater silcrete, comprising fine-to-medium grained quartz sand cemented by optically-continuous syntaxial quartz overgrowths. In addition to detrital quartz, trace quantities of silica-rich rock fragments, Fe-oxides/hydroxides and other minerals are present. Cathodoluminescence analyses show that the quartz cement developed as an initial <10 μm thick zone of non-luminescing quartz followed by ~16 separate quartz cement growth zones. Late-stage Fe-oxides/hydroxides and Ti-oxides line and/or infill some pores. Automated mineralogical analyses indicate that the sarsen preserves 7.2 to 9.2 area % porosity as a moderately-connected intergranular network. Geochemical data show that the sarsen is chemically pure, comprising 99.7 wt. % SiO2. The major and trace element chemistry is highly consistent within the stone, with the only magnitude variations being observed in Fe content. Non-quartz accessory minerals within the silcrete host sediments impart a trace element signature distinct from standard sedimentary and other crustal materials. 143Nd/144Nd isotope analyses suggest that these host sediments were likely derived from eroded Mesozoic rocks, and that these Mesozoic rocks incorporated much older Mesoproterozoic material. The chemistry of Stone 58 has been identified recently as representative of 50 of the 52 remaining sarsens at Stonehenge. These results are therefore representative of the main stone type used to build what is arguably the most important Late Neolithic monument in Europe.


Water ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 1890
Author(s):  
Jie Ren ◽  
Zhengxiang Lv ◽  
Honghui Wang ◽  
Jianmeng Wu ◽  
Shunli Zhang

High-precision in situ δ18O values obtained using secondary ion mass spectrometry (SIMS) for μm-size quartz cement are applied to constrain the origin of the silica in the deep-buried Upper Triassic second member of Xujiahe Formation tight sandstones, western Sichuan Basin, China. Petrographic, cathodoluminescence (CL), and fluid inclusion data from the quartz cements in the Xu2 sandstones indicate three distinct, separate quartz precipitation phases (referred to as Q1, Q2, and Q3). The Q1 quartz cement was formed at temperatures of approximately 56–85 °C and attained the highest δ18O values (ranging from 18.3 to 19.05‰ Vienna Standard Mean Ocean Water (VSMOW)). The Q2 quartz cement was generated at temperatures of approximately 90–125 °C, accompanying the main phase of hydrocarbon fluid inclusions, with the highest Al2O3 content and high δ18O values (ranging from 15 to 17.99‰ VSMOW). The Q3 quartz cement was formed at temperatures of approximately 130–175 °C, with the lowest δ18O values (ranging from 12.79 to 15.47‰ VSMOW). A portion of the Q2 and Q3 quartz cement has a relatively high K2O content. The dissolution of feldspar and volcanic rock fragments was likely the most important source of silica for the Q1 quartz cement. The variations in δ18O(water) and trace element composition from the Q2 quartz cement to the Q3 quartz cement suggest that hydrocarbon emplacement and water-rock interactions greatly altered the chemistry of the pore fluid. Feldspar dissolution by organic acids, clay mineral reactions (illitization and chloritization of smectite), and pressure dissolution were the main sources of silica for the Q2 and Q3 quartz cements, while transformation of the clay minerals in the external shale unit was a limited silica source.


Author(s):  
Maxime Virolle ◽  
Benjamin Brigaud ◽  
Daniel Beaufort ◽  
Patricia Patrier ◽  
Eid Abdelrahman ◽  
...  

Chlorite is recognized worldwide as a key mineral that inhibits the development of quartz cement in deeply buried sandstone reservoirs. Iron-rich chlorite is mainly formed by the transformation of a precursor clay mineral; however, few studies have focused on the early stages before the crystallization of chlorite. This study analyzed shallowly buried (400−1000 m) coastal sandstones from within the Wealden Group of the Paris Basin. Berthierine, a 7 Å trioctahedral clay mineral belonging to the serpentine group, approximatively with same chemistry as chlorite but a different crystal structure, has been identified in a 900-m-deep well but not in a 400−600-m-deep well. Berthierine has mainly been observed as clay coatings around detrital grains with a typical honeycomb texture. Nanopetrographic observations suggest that the honeycomb textural organization of the clay particles found in deeper buried sandstone reservoirs (&gt;1500 m) is acquired from a berthierine precursor at shallow depths. However, small amounts of quartz overgrowths are observed on the surface of detrital grains at shallow depths and low temperature (below 40 °C), and it is believed that precursor berthierine coatings are primarily responsible for the inhibition of quartz overgrowths before Fe-rich chlorite is formed. This suggests that the key mineral primarily controlling the reservoir quality of deeply buried sandstone reservoirs is berthierine rather than iron-rich chlorite, which challenges the commonly accepted assertion that chlorite coating is the main process that inhibits quartz overgrowths. The source-to-sink context of the Paris Basin during the Early Cretaceous was decisive with respect to the supply of sands and berthierine clay precursors (in particular kaolinite and iron-rich, hydroxy-interlayered clay minerals) to the center of the basin.


2021 ◽  
Vol 9 ◽  
Author(s):  
Jixin Deng ◽  
Chongyi Wang ◽  
Qun Zhao ◽  
Wei Guo ◽  
Genyang Tang ◽  
...  

This integrated study provides significant insight into parameters controlling the dynamic and static elastic behaviors of shale. Acoustic and geomechanical behaviors measurement from laboratory have been coupled with detailed petrographic and geochemical analyses, and microtexture observations on shale samples from the Wufeng−Longmaxi Formation of the southeast Sichuan Basin. The major achievement is the establishment of the link between depositional environment and the subsequent microtexture development, which exerts a critical influence on the elastic properties of the shale samples. Microtexture and compositional variation between upper and lower sections of the Wufeng−Longmaxi Formation show that the former undergoes normal mechanical and chemical compaction to form clay supported matrices with apparent heterogonous mechanical interfaces between rigid clasts and the aligned clay fabric. Samples from lower sections exhibited a microcrystalline quartz-supported matrix with a homogeneous mechanical interface arising from syn-depositional reprecipitation of biogenic quartz cement. This type of microtexture transition exerts primary control on elastic behavior of the shale samples. A clear “V” shaped trend observed from acoustic velocities and static Young’s moduli document contrasting roles played by microtexture, porosity and organic matter in determining elastic properties. Samples with a quartz-supported matrix exhibit elastic deformation and splitting failure modes. The increment of the continuous biogenic quartz cemented medium with limited mechanic interface. By contrast, samples showing a predominantly clay-supported matrix exhibited more signs of plastic deformation reflecting heterogeneous mechanical interfaces at grain boundaries.


Author(s):  
V Erofeeva ◽  
D V Emelyanov ◽  
M A S Bushes ◽  
E M Balatkhanova ◽  
S V Nadorov ◽  
...  

2019 ◽  
Vol 132 (7-8) ◽  
pp. 1722-1740 ◽  
Author(s):  
Jian Gao ◽  
Sheng He ◽  
Jian-xin Zhao ◽  
Zhiliang He ◽  
Changwu Wu ◽  
...  

Abstract The Wufeng and Longmaxi organic-rich shales host the largest shale gas plays in China. This study examined the petrography, rare earth element (REE) and other trace-element geochemistry, Sm-Nd geochronology, and isotope geochemistry (87Sr/86Sr, δ18O, δ13C) of fracture-cementing minerals within core samples of the Wufeng and Longmaxi Formations from the Jiaoshiba shale gas field in order to (1) characterize the mineral phases occurring in the veins (mineralized fractures); (2) determine the ages of the calcite by the Sm-Nd isochron dating method; (3) understand the sources of calcite-precipitating fluids; and (4) explore the possible mechanisms responsible for calcite vein formation in shale gas systems. The fractures hosted in the Longmaxi Formation are mineralized with quartz as the predominant fracture cement, and calcite as an intracementation phase postdating the earlier quartz cement. In contrast, the fractures hosted in the Wufeng Formation are dominantly mineralized by calcite, which occurs either as the only cement present or as a cement phase predating later quartz cement. Calcite veins within the Longmaxi Formation have a Sm-Nd isochron age of 160 ± 13 Ma and δ13C values of –4.71‰ to –3.11‰, δ18O values of 17.1‰–17.4‰, and 87Sr/86Sr values of 0.72437–0.72869. Calcite veins within the Wufeng Formation yielded a Sm-Nd isochron age of 133 ± 15 Ma and are characterized by δ13C values of –2.29‰ to –1.03‰, δ18O values of 17.3‰–17.7‰, and 87Sr/86Sr values of 0.72202–0.72648. The similarity between 87Sr/86Sr values of the calcite and those of their respective surrounding host rocks (0.72670–0.72875 of the Longmaxi shales; 0.72030–0.72648 of the Wufeng shales), combined with relatively depleted δ13C and uniform fluid δ18O isotopic features, indicates that the calcite-precipitating fluids within the Wufeng and Longmaxi Formations were derived largely from their respective surrounding host-rock sources. REE data equally indicate that the distinguishable Eu anomalies (6.20–19.35; 4.45–11.91), Y anomalies (1.03–1.50; 1.44–1.70), and Y/Ho ratios (28.80–39.16; 38.86–45.18) of calcite veins within the Longmaxi and Wufeng Formations were controlled by their respective surrounding host rocks. The Sm-Nd isochron ages and fluid inclusion data of fracture cements suggest that fracture opening and calcite precipitation in composite veins within the Wufeng and Longmaxi Formations were triggered by gas generation overpressurization.


Sign in / Sign up

Export Citation Format

Share Document