UPPER CAMBRIAN AND TREMADOCIAN SEDIMENTS IN THE NAROL AREA (SOUTHERN LUBLIN REGION) – SOURCE AND RESERVOIR OF SHALE GAS?

Author(s):  
Magdalena Sikorska-Jaworowska

Petrologic investigations of Upper Cambrian and Tremadocian deposits were carried out in the Narol region (southern Lublin region) in prospecting for shale gas accumulations. The observations and analyses were made using a polarizing microscope, luminoscope (CL) and scanning microscope (BSE, SE, EDS, SEM-CL). The following analyses were performed: CL-spectral analysis of quartz, X-ray structural analysis of clay fraction, and pyrolytic analysis of organic matter. The rocks under study are represented mainly by clay-silt shales with sandy interbeds. They belong to the epicontinental siliciclastic association deposited on an extensive shelf subjected to tidal and storm action. The shales consist largely of illite, and the silt fraction is represented by quartz with a small admixture of feldspars. Quartz cement is common (growths and aggregates of authigenic quartz), while carbonate cement (calcite, Fe-dolomite/ ankerite and siderite), as well as pyrite, kaolinite and phosphate cements are rare. The shales reveal microporosity in the form of “microchannels” paralleling illite plates, and within mica packets. The micropores (1–2 µm in size) are observed in both the carbonate cement and organic matter. As a result of deep burial and intense diagenetic processes, the organic matter has undergone strong alteration (max. Ro = 2.5%). The vitrinite reflectance index and pyrolitic analysis of organic matter, as well as the highly ordered illite structure, indicate the maximum palaeotemperatures in the range of 120–150°C. The rocks show numerous fractures healed with carbonates and/or quartz. Some of the fractures that run parallel to the lamination (or more rarely those running perpendicular or at a high angle) have remained open and are potential pathways of hydrocarbon migration. Pyrolytic analysis shows that the shales do not represent source rocks. It is supposed that they do not represent reservoirs for unconventional hydrocarbon accumulations.

2013 ◽  
Vol 868 ◽  
pp. 121-124 ◽  
Author(s):  
Jun Yuan ◽  
Yan Bin Wang ◽  
Xin Zhang ◽  
Jing Jing Fan ◽  
Pei Xue

The Shanxi and Taiyuan formations in Permo-Carboniferous of upper Paleozoic Erathem of Qinshui Basin, not only has abundant coal and CBM resources, also has a lot of shales. By analyzing the shale thickness, organic matter type, organic matter abundance, vitrinite reflectance, mineral composition of the Permo-Carboniferous coal-bearing strata, considered that the shale thickness of coal-bearing strata in the Qinshui Basin is larger, the organic matter abundance is general, but maturity is high and full of rich brittle mineral. It is in favor of late fracturing.


2003 ◽  
Vol 43 (1) ◽  
pp. 117 ◽  
Author(s):  
C.J. Boreham ◽  
J.E. Blevin ◽  
A.P. Radlinski ◽  
K.R. Trigg

Only a few published geochemical studies have demonstrated that coals have sourced significant volumes of oil, while none have clearly implicated coals in the Australian context. As part of a broader collaborative project with Mineral Resources Tasmania on the petroleum prospectivity of the Bass Basin, this geochemical study has yielded strong evidence that Paleocene–Eocene coals have sourced the oil and gas in the Yolla, Pelican and Cormorant accumulations in the Bass Basin.Potential oil-prone source rocks in the Bass Basin have Hydrogen Indices (HIs) greater than 300 mg HC/g TOC. The coals within the Early–Middle Eocene succession commonly have HIs up to 500 mg HC/g TOC, and are associated with disseminated organic matter in claystones that are more gas-prone with HIs generally less than 300 mg HC/g TOC. Maturity of the coals is sufficient for oil and gas generation, with vitrinite reflectance (VR) up to 1.8 % at the base of Pelican–5. Igneous intrusions, mainly within Paleocene, Oligocene and Miocene sediments, produced locally elevated maturity levels with VR up to 5%.The key events in the process of petroleum generation and migration from the effective coaly source rocks in the Bass Basin are:the onset of oil generation at a VR of 0.65% (e.g. 2,450 m in Pelican–5);the onset of oil expulsion (primary migration) at a VR of 0.75% (e.g. 2,700–3,200 m in the Bass Basin; 2,850 m in Pelican–5);the main oil window between VR of 0.75 and 0.95% (e.g. 2,850–3,300 m in Pelican–5); and;the main gas window at VR >1.2% (e.g. >3,650 m in Pelican–5).Oils in the Bass Basin form a single oil population, although biodegradation of the Cormorant oil has resulted in its statistical placement in a separate oil family from that of the Pelican and Yolla crudes. Oil-to-source correlations show that the Paleocene–Early Eocene coals are effective source rocks in the Bass Basin, in contrast to previous work, which favoured disseminated organic matter in claystone as the sole potential source kerogen. This result represents the first demonstrated case of significant oil from coal in the Australian context. Natural gases at White Ibis–1 and Yolla–2 are associated with the liquid hydrocarbons in their respective fields, although the former gas is generated from a more mature source rock.The application of the methodologies used in this study to other Australian sedimentary basins where commercial oil is thought to be sourced from coaly kerogens (e.g. Bowen, Cooper and Gippsland basins) may further implicate coal as an effective source rock for oil.


2020 ◽  
Vol 10 (8) ◽  
pp. 3191-3206
Author(s):  
Olusola J. Ojo ◽  
Ayoola Y. Jimoh ◽  
Juliet C. Umelo ◽  
Samuel O. Akande

Abstract The Patti Formation which consists of sandstone and shale offers the best potential source beds in the Bida Basin. This inland basin is one of the basins currently being tested for hydrocarbon prospectivity in Nigeria. Fresh samples of shale from Agbaja borehole, Ahoko quarry and Geheku road cut were analysed using organic geochemical and palynological techniques to unravel their age, paleoecology, palynofacies and source bed hydrocarbon potential. Palynological data suggest Maastrichtian age for the sediments based on the abundance of microfloral assemblage; Retidiporites magdalenensis, Echitriporites trianguliformis and Buttinia andreevi. Dinocysts belonging to the Spiniferites, Deflandrea and Dinogymnium genera from some of the analysed intervals are indicative of freshwater swamp and normal sea conditions. Palynological evidence further suggests mangrove paleovegetation and humid climate. Relatively high total organic carbon TOC (0.77–8.95 wt%) was obtained for the shales which implies substantial concentration of organic matter in the source beds. Hydrocarbon source rock potential ranges from 0.19 to 0.70 mgHC/g.rock except for a certain source rock interval in the Agbaja borehole with high yield of 25.18 mgHC/g.rock. This interval also presents exceptionally high HI of 274 mgHC/g.TOC and moderate amount of amorphous organic matter. The data suggests that in spite of the favourable organic matter quantity, the thermal maturity is low as indicated by vitrinite reflectance and Tmax (0.46 to 0.48 Ro% and 413 to 475 °C, respectively). The hydrocarbon extracts show abundance of odd number alkanes C27–C33, low sterane/hopane ratio and Pr/Ph > 2. We conclude that the source rocks were terrestrially derived under oxic condition and dominated by type III kerogen. Type II organic matter with oil and gas potential is a possibility in Agbaja area of Bida Basin. Thermal maturity is low and little, or no hydrocarbon has been generated from the source rocks.


2018 ◽  
Vol 36 (6) ◽  
pp. 1482-1497
Author(s):  
Qiang Xu ◽  
Fengyin Xu ◽  
Bo Jiang ◽  
Yue Zhao ◽  
Xin Zhao ◽  
...  

We analyzed the tectonic evolution characteristics, sedimentary environment, geochemical characteristics, petrological characteristics, and gas-bearing properties of three mudstone sections of the Lower Paleozoic in Ningwu Basin, NE China, and determined the geologic characteristics and resource potential of the transitional facies shale gas. Geochemical analysis of the organic carbon content, kerogen macerals, and vitrinite reflectance of the shale samples showed that the total organic content was generally over 2.0%, the main organic type was type III, and the vitrinite reflectance values (Ro) were between 1.20 and 1.90%. Thus, the mudstones are good shale gas source rocks. The thickness of the three mudstone sections was approximately 30–70 m, and the average porosity was 3.10%. The pore types were diverse with good reservoir capacity. The shale gas resources of the Carboniferous-Permian transitional facies estimated by the volumetric method were approximately 2798.97 × 108–4643.09 × 108 m3. Through a comparison with shales in SW China, where shale gas has been successfully exploited, we determined the preferred criteria for favorable shale gas areas, as well as favorable areas for shale gas enrichment.


2012 ◽  
Vol 63 (4) ◽  
pp. 335-342 ◽  
Author(s):  
Paweł Kosakowski ◽  
Magdalena Wróbel

Burial history, thermal history and hydrocarbon generation modelling of the Jurassic source rocks in the basement of the Polish Carpathian Foredeep and Outer Carpathians (SE Poland)Burial history, thermal maturity, and timing of hydrocarbon generation were modelled for the Jurassic source rocks in the basement of the Carpathian Foredeep and marginal part of the Outer Carpathians. The area of investigation was bounded to the west by Kraków, to the east by Rzeszów. The modelling was carried out in profiles of wells: Będzienica 2, Dębica 10K, Góra Ropczycka 1K, Goleszów 5, Nawsie 1, Pławowice E1 and Pilzno 40. The organic matter, containing gas-prone Type III kerogen with an admixture of Type II kerogen, is immature or at most, early mature to 0.7 % in the vitrinite reflectance scale. The highest thermal maturity is recorded in the south-eastern part of the study area, where the Jurassic strata are buried deeper. The thermal modelling showed that the obtained organic matter maturity in the initial phase of the "oil window" is connected with the stage of the Carpathian overthrusting. The numerical modelling indicated that the onset of hydrocarbon generation from the Middle Jurassic source rocks was also connected with the Carpathian thrust belt. The peak of hydrocarbon generation took place in the orogenic stage of the overthrusting. The amount of generated hydrocarbons is generally small, which is a consequence of the low maturity and low transformation degree of kerogen. The generated hydrocarbons were not expelled from their source rock. An analysis of maturity distribution and transformation degree of the Jurassic organic matter shows that the best conditions for hydrocarbon generation occurred most probably in areas deeply buried under the Outer Carpathians. It is most probable that the "generation kitchen" should be searched for there.


2021 ◽  
Vol 11 (10) ◽  
pp. 3663-3688
Author(s):  
Amin Tavakoli

AbstractThe aim of this study is to provide a better understanding of the type of source input, quality, quantity, the condition of depositional environment and thermal maturity of the organic matter from Bukit Song, Sarawak, which has not been extensively studied for hydrocarbon generation potential. Petrological and geochemical analyses were performed on 13 outcrop samples of the study location. Two samples, having type III and mixed kerogen, showed very-good-to-excellent petroleum potential based on bitumen extraction and data from Rock–Eval analysis. The rest of the samples are inert—kerogen type IV. In terms of thermal maturity based on vitrinite reflectance, the results of this paper are akin to previous studies done in the nearby region reported as either immature or early mature. Ph/n-C18 versus Pr/n-C17 data showed that the major concentration of samples is within peat coal environment, whilst two samples were associated with anoxic marine depositional environment, confirmed by maceral content as well. Macerals mainly indicated terrestrial precursors and, overall, a dominance of vitrinite. Quality of the source rock based on TOC parameter indicated above 2 wt. % content for the majority of samples. However, consideration of TOC and S2 together showed only two samples to have better source rocks. Existence of cutinite, sporinite and greenish fluorescing resinite macerals corroborated with the immaturity of the analysed coaly samples. Varying degrees of the bitumen staining existed in a few samples. Kaolinite and illite were the major clays based on XRD analysis, which potentially indicate low porosity. This study revealed that hydrocarbon-generating potential of Bukit Song in Sarawak is low.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Lingyun Zhao ◽  
Peiming Zhou ◽  
Yi Lou ◽  
Youzhou Zhao ◽  
Wei Liu ◽  
...  

China’s marine-continental transitional facies shale gas resources are abundant with shale gas resources of about 19.8 trillion cubic meters, while the exploration and development of these shale gas resources are still in the initial stage. The Upper Permian Longtan coal series shale is one of the most important transitional shales in the Yangtze platform, China. In this study, the comprehensive methods of mineralogy and organic geochemistry are used to discuss the characteristic of organic matter and sedimentary environment of the Longtan coal series shale in western Guizhou Province, South China. The results show that (1) the total organic carbon (TOC) content of this shale ranges in 0.6%-28.21%, mainly in 3%-12%, indicating a “good-excellent” hydrocarbon source rock, and its vitrinite reflectance ( R o ) ranges from 1.48% to 2.93%, indicating a high-overmature organic matter; (2) the organic matter in this shale is multiorigin, and most of them come from the terrestrial higher plant while the rest come from the plankton; (3) type index (TI) of organic matter is from -65 to 41, indicating most of the kerogens which are II1-III types; and (4) the sedimentary environment of this shale is dominated by suboxic-anoxic fresh water environment, which provides a favorable condition for the preservation of organic matter. In addition, the warm and humid climate during the Late Permian in the Yangtze platform promotes plant growth, and as a result, the Longtan coal series shale is rich in organic matter and has great potential of shale gas exploration and development.


Geofluids ◽  
2022 ◽  
Vol 2022 ◽  
pp. 1-16
Author(s):  
L. Zhang ◽  
Q. Zhao ◽  
C. Wu ◽  
Z. Qiu ◽  
Q. Zhang ◽  
...  

In the Ordos Basin, multiple sets of coal seams, organic-rich shale, and limestone are well developed in the Permian Taiyuan Formation, which are favorable targets for collaborative exploration of various types of unconventional natural gas resources, including coalbed methane, shale gas, and tight gas. In this study, core samples from the Permian Taiyuan Formation in the eastern margin of the Ordos Basin were used to carry out a series of testing and analysis, such as the organic matter characteristics, the mineral composition, and the pore development characteristics. In the shale of the Taiyuan Formation, the total organic carbon (TOC) content is relatively high, with an average of 5.38%. A thin layer of black shale is developed on the top of the Taiyuan Formation, which is relatively high in TOC content, with an average of 9.72%. The limestone in the Taiyuan Formation is also relatively high in organic matter abundance, with an average of 1.36%, reaching the lower limit of effective source rocks (>1%), being good source rocks. In the shale of the Taiyuan Formation, various types of pores are well developed, with relatively high overall pore volume and pore-specific surface area, averaging 0.028 ml/g and 13.28 m2/g, respectively. The pore types are mainly mineral intergranular pores and clay mineral interlayer fractures, while organic matter-hosted pores are poorly developed. The limestone of the Taiyuan Formation is relatively tight, with lower pore volume and pore-specific surface area than those of shale, averaging 0.0106 ml/g and 2.72 m2/g, respectively. There are mainly two types of pores, namely, organic matter-hosted pores and carbonate mineral dissolution pores, with a high surface pore rate. The organic matter in the limestone belongs to the oil-generation kerogen. During thermal evolution, the organic matter has gone through the oil-generation window, generating a large number of liquid hydrocarbons, which were cracked into a large number of gaseous hydrocarbons at the higher mature stage. As a result, a large number of organic matter-hosted pores were generated. The study results show that in the Ordos Basin, the shale and limestone of the Permian Taiyuan Formation have great potential in terms of unconventional natural gas resources, providing a good geological basis for the collaborative development of coal-bearing shale gas and tight limestone gas in the Taiyuan Formation.


2021 ◽  
Author(s):  
Madhujya L. Phukan ◽  
Saad A. Siddiqi ◽  
Abdulla Alblooshi ◽  
Maryam Alshehhi ◽  
Ashis Shashanka ◽  
...  

Abstract Objectives/Scope: The late Callovian to early Kimmeridigian deposited Tuwaiq Mountain, Hanifa and Jubaila Formations are among the most prolific source rocks in the middle east. These sediments have recently been considered as potential unconventional gas reservoir in UAE. This study integrates sedimentological, structural, geochemical and pore-scale datasets to provide a better understanding of the depositional framework and its effects on the reservoir properties. Methods, Procedures, Process: Dunham Classification (1962) which was later modified by Embry & Klovan (1971) is the basis of the descriptive lithofacies scheme used to characterize the organic-rich carbonate sediments. The association of these classified lithofacies based on their genetic relationship reflects their corresponding depositional environments. Petrographical and geochemical assessment including Rock-Eval pyrolysis were performed on selected samples. Mineralogical assessment was performed via whole-rock and clay-fraction XRD analysis, whereas pore-scale fabric/textural investigations were performed via conventional transmitted light microscopy and SEM using backscattered electron mode BS-SEM. Results, Observations, Conclusions: Sedimentological characterization of mud-dominated carbonate sediments indicates that they accumulated in a clastic starved, intrashelf basinal setting. The lack of textural variation is observed, highlighted by the dominance of mudstones noted across the Tuwaiq Mountain Fm., Hanifa and Jubaila Formations. Wackestones are the second most abundant texture observed. Wacke-packstones and packstones are rare but are present in the Tuwaiq Mountain Formation. also dominated by mudstone textures show presence of wackestones in form of thin beds. The occurrences of planktonic foraminifera along with thin shelled bivalves further emphasizes the low-energy, distal depositional setting. A quantitative description of the nature, density, and trends of the fracture network highlights the tectonic and structural history of the sediments. A certain degree of brittleness is associated with the organic-rich sediments, which is evident from the mineralogical analysis showing the abundance of calcite (>82%). Rock-Eval data revealed high TOC content of the sediments. An evaluation of the HI and Tmax indicates that the sediments are dominantly gas prone (HI<150mg HC/g TOC). Based on the calculated reflectance data (Ro: 0.06-3.30), the sediments display varied levels of thermal maturity, from immature to over mature. The vitrinite reflectance equivalent (%VRE) values assessed from microscopic investigations a range between 1.24-1.64, with the lower values suggesting late maturity with wet (condensate) gas generation and the higher values suggesting post maturity with dry gas generation. The TOC and TRA data highlight that the organic-rich, laminated mudstones associated with the Hanifa and Tuwaiq Mountain Formations have the highest TOC values (up to 4.25wt%) and the highest bulk volume (up to 3.39 %BV). It is also noted that the petroleum storage potential in these sediments largely resides with the mineral matrix pores along with the porosity hosted by the organic matter, which has been assessed by BS-SEM analysis. Novel/Additive Information: This integrated approach sheds light on the development of unconventional gas reservoirs. In addition, this study shows how the changes in depositional environment may have controlled the organic matter preservation. For a plausible way forward, this current understanding may be extrapolated to uncored intervals for representativeness.


2014 ◽  
Vol 1010-1012 ◽  
pp. 1425-1429
Author(s):  
Hai Yan Cheng ◽  
Yin Sheng Ma ◽  
Cheng Ming Yin ◽  
Yuan Yuan Yang

Shale of rich organic matter presents in Upper Carboniferous in Qaidam Basin, Northwest of China. Carboniferous shale thickness is between 100 ~ 300m in the Qaidam Basin, the shale includes silty mudstone shale, calcareous mudstone, shale and carbonaceous shale, and it is very favorable lithology type for shale gas. According to the shale organic geochemical analysis, the abundance of organic matter reaching the middle - good degree of hydrocarbon source rocks; the type of organic matter is mainly II2 and III type. The maturity of organic matter is mainly between 1 % -1.3 %. The Upper Carboniferous shale thermal evolution is in mature oil and gas stage. The Upper Carboniferous hydrocarbon-rich shale distribute stability, with great thickness. Shale gas potential in Upper Carboniferous is quite large.


Sign in / Sign up

Export Citation Format

Share Document