Fire patterns in north Australian savannas: extending the reach of incentives for savanna fire emissions abatement

2014 ◽  
Vol 36 (4) ◽  
pp. 371 ◽  
Author(s):  
Peter J. Whitehead ◽  
Jeremy Russell-Smith ◽  
Cameron Yates

Anthropogenic fires in Australia’s fire-prone savannas produce up to 3% of the nation’s accountable greenhouse gas (GHG) emissions. Incentives to improve fire management have been created by a nationally accredited savanna burning emissions abatement methodology applying to 483 000 km2 of relatively high-rainfall (>1000 mm p.a.) regions. Drawing on 15 years of fire mapping, this paper assesses appropriate biophysical boundaries for a savanna burning methodology extended to cover lower-rainfall regions. We examine a large random sample of points with at least 300 mm of annual rainfall, to show that: (a) relative fire frequencies (percentage of years with fire) decline from 33.3% in higher-rainfall regions (>1000 mm) to straddling ~10% in the range 300–700 mm; (b) there are no marked discontinuities in fire frequency or fire seasonality down the rainfall gradient; (c) at all annual rainfalls, fire frequency is higher when rainfall is more strongly seasonal (very low rainfall in the driest quarter); (d) below 500 mm fire regimes are particularly variable and a large proportion of sampled sites had no fire over the study period; (e) fire is more likely to occur later in the fire season (generating relatively higher emissions) in the 600–700-mm annual rainfall band than in other parts of the rainfall gradient; (f) woodland savannas are most common above and predominantly grassland systems are more common below ~600-mm annual rainfall. We propose that development of a complementary lower-rainfall savanna burning methodology apply to regions between 600 and 1000-mm annual rainfall and ≤15 mm of rainfall in the driest quarter, adding an area more than 1.5 times the existing methodology’s coverage. Given greater variability in biophysical influences on fire regimes and observed levels of fire frequency within this lower-rainfall domain, we suggest that criteria for determining baseline (pre-project) periods require estimates of mean annual emissions equivalent in precision to the project on which the higher-rainfall methodology was based.

2016 ◽  
Vol 371 (1696) ◽  
pp. 20150346 ◽  
Author(s):  
Sally Archibald

Human impacts on fire regimes accumulated slowly with the evolution of modern humans able to ignite fires and manipulate landscapes. Today, myriad voices aim to influence fire in grassy ecosystems to different ends, and this is complicated by a colonial past focused on suppressing fire and preventing human ignitions. Here, I review available evidence on the impacts of people on various fire characteristics such as the number and size of fires, fire intensity, fire frequency and seasonality of fire in African grassy ecosystems, with the intention of focusing the debate and identifying areas of uncertainty. Humans alter seasonal patterns of fire in grassy systems but tend to decrease total fire emissions: livestock have replaced fire as the dominant consumer in many parts of Africa, and fragmented landscapes reduce area burned. Humans alter the season and time of day when fires occur, with important implications for fire intensity, tree–grass dynamics and greenhouse gas (GHG) emissions. Late season fires are more common when fire is banned or illegal: these later fires are far more intense but emit fewer GHGs. The types of fires which preserve human livelihoods and biodiversity are not always aligned with the goal of reducing GHG concentrations. Current fire management challenges therefore involve balancing the needs of a large rural population against national and global perspectives on the desirability of different types of fire, but this cannot happen unless the interests of all parties are equally represented. In the future, Africa is expected to urbanize and land use to intensify, which will imply different trajectories for the continent's fire regimes. This article is part of the themed issue ‘The interaction of fire and mankind.


2016 ◽  
Vol 25 (7) ◽  
pp. 742 ◽  
Author(s):  
Justin J. Perry ◽  
Eric P. Vanderduys ◽  
Alex S. Kutt

Carbon farming initiatives have rapidly developed in recent years, influencing broad scale changes to land management regimes. In the open carbon market a premium can be secured if additional benefits, such as biodiversity conservation or social advancement, can be quantified. In Australia, there is an accepted method for carbon abatement that requires shifting fire frequency from predominantly late, defined as fires occurring after August 1, to early dry-season fires or by reducing overall fire frequency. There is an assumption and some evidence that this might accrue co-benefits for biodiversity. We tested this assumption by comparing terrestrial vertebrate biodiversity patterns (richness and abundance of reptiles, birds and mammals) against increasing fire frequency in the early and late dry-season at the same spatial resolution as the fire management for emission abatement method. We systematically sampled 202 sites on Cape York Peninsula, and examined the relationship between vertebrate fauna, fire and environmental metrics. We found that within the approved vegetation type, open woodlands in tropical savanna woodland, early and late dry-season fire frequency had the same weak linear relationship with only some elements of the observed fauna. Additionally, the response of each taxa to fire frequency were different across broad vegetation structural categories, suggesting that a more nuanced species-specific monitoring approach is required to expose links between savanna burning for carbon abatement and burning for biodiversity benefit.


2016 ◽  
Author(s):  
M. Bristow ◽  
L. B. Hutley ◽  
J. Beringer ◽  
S. J. Livesley ◽  
A. C. Edwards ◽  
...  

Abstract. Clearing and burning of tropical savanna leads to globally significant emissions of greenhouse gases (GHG) although there is large uncertainty relating to the magnitude of this flux. Australia’s tropical savannas occupy over 25 % of the continental land mass and have a potential to significant influence the national greenhouse gas budget, particularly because they are the focus of likely agricultural expansion. To investigate the role of deforestation on GHG emissions, a paired site approach was used. The CO2 exchange was measured from two tropical savanna woodland sites, one that was cleared, and a second analogue site that remained uncleared for a 22 month observation period. At both sites, net ecosystem exchange (NEE) was measured using the eddy covariance (EC) method. Observations at the cleared site was continuous before, during and after the clearing event, providing high resolution data that tracked CO2 emissions through multiple phases of land use change. At the cleared site, post-clearing debris was allowed to cure for 6 months and was subsequently burnt, followed by extensive soil preparation for cropping. Emissions were estimated from the debris fire by quantify the on-site biomass prior to clearing and applying savanna-specific emissions factors to estimate a fire-derived GHG emission. This was added to net CO2 fluxes as measured by the eddy covariance tower giving a total GHG emission of 154 Mg CO2-e ha−1 from a savanna woodland with a total fuel load (above- and below- ground woody debris, course woody debris, litter plus C4 grass fuel) of 40.9 Mg C ha−1. This emission was dominated by debris combustion from the fire event, which was 83 % of the total emission, the remained from soil emissions and decay of debris during the curing period prior to burning. Soil disturbance from ploughing and site preparation for cropping was responsible for almost 10 % of the total emission. Fluxes at the uncleared site were tracked using an additional flux tower for 668 days and over this period, cumulative NEE was −2.1 Mg C ha−1, a net carbon sink. Estimated emissions for this savanna type were then upscaled to provide estimates of the magnitude of emissions from any future deforestation. At current rates of deforestation, savanna burning is as significant a source of GHG emissions as deforestation, with fire emissions occurring every year across this savanna biome. However, expanded deforestation could exceed fire emissions and a clearing scenario was examined which suggested clearing over and above current rates could add up to 5 % to Australia’s national GHG account, depending on the annual rate of deforestation. This bottom-up study provides data that can reduce uncertainty associated with land use change for this extensive tropical ecosystem and provide an assessment of the relative magnitude of GHG emissions from savanna burning and deforestation as well as informing northern land use decision making processes.


2020 ◽  
Vol 29 (12) ◽  
pp. 1109
Author(s):  
Cameron Yates ◽  
Harry MacDermott ◽  
Jay Evans ◽  
Brett P. Murphy ◽  
Jeremy Russell-Smith

Several studies have separately explored accumulation of the dominant fuels (grass, fine litter (<6mm diameter) and coarse woody debris (CWD, 6–50mm diameter)) in north Australian savannas. We report an analysis of two longitudinal datasets describing how these three fuel components covary in abundance throughout the year in eucalypt-dominated savanna over a rainfall gradient of 700–1700mm mean annual rainfall (MAR). Our observations concur generally with previous observations that litter accumulation results in a late dry season (LDS) peak in biomass, whereas cured grassy fuels typically are seasonally invariant, and CWD inputs are associated with stochastic severe wet season storms and dry season fires. The distinct LDS litter peak contributes significantly to the potential for LDS fires to be of higher intensity, burn more fuel per unit area and produce greater emissions relative to early dry season (EDS) fires. However, Australia’s current (2018) formal savanna burning emissions avoidance methodology erroneously deems greater EDS fine fuel (grass and fine litter) biomass in four of nine designated vegetation fuel types. The study highlights the need to develop seasonally dynamic modelling approaches that better account for significant seasonal variation in fine fuel inputs and decomposition.


Bothalia ◽  
2016 ◽  
Vol 46 (2) ◽  
Author(s):  
Nokuphila L.S. Buthelezi ◽  
Onisimo Mutanga ◽  
Mathieu Rouget ◽  
Mbulisi Sibanda

Background: The role of fire in maintaining grassland diversity has been widely recognised; however, its effect in KwaZulu-Natal grasslands is still rudimentary. In that regard, understanding fire regimes of different vegetation types in KwaZulu-Natal is a critical step towards the development of effective management strategies that are specific to each vegetation type. Objective: To assess the effect of different vegetation types on fire regimes in KwaZulu-Natal using moderate resolution imaging spectroradiometer (MODIS) burnt fire products. Method: Ten years of fire data for four different vegetation types (Ngongoni Veld, KwaZuluNatal Sandstone Sourveld, Eastern Valley Bushveld and KwaZulu-Natal Coastal Belt) were extracted from the MODIS products and used as a basis to establish three parameters: annual burnt areas, fire season and fire frequency. The total burnt area within each vegetation type over the 10-year period was quantified. Results: The KZN Sandstone Sourveld had a high-burnt area of 80% in 2009 with KwaZuluNatal Coastal Belt having the least burnt area of less than 5%. Ngongoni Veld and the KwaZuluNatal Sandstone Sourveld had the highest fire frequency, while the coastal region had low fire frequencies. Results showed high fire prevalence during the late period of the dry season (which extends from June to August) across all the vegetation types. Conclusion: This study underscores the potential of remotely sensed data (MODIS burned area products) in providing a comprehensive view of fire patterns in different vegetation types


Fire ◽  
2021 ◽  
Vol 4 (3) ◽  
pp. 32
Author(s):  
Judy A. Foulkes ◽  
Lynda D. Prior ◽  
Steven W. J. Leonard ◽  
David M. J. S. Bowman

Australian montane sclerophyll shrubland vegetation is widely considered to be resilient to infrequent severe fire, but this may not be the case in Tasmania. Here, we report on the vegetative and seedling regeneration response of a Tasmanian non-coniferous woody montane shrubland following a severe fire, which burned much of the Great Pine Tier in the Central Plateau Conservation Area during the 2018–2019 fire season when a historically anomalously large area was burned in central Tasmania. Our field survey of a representative area burned by severe crown fire revealed that more than 99% of the shrubland plants were top-killed, with only 5% of the burnt plants resprouting one year following the fire. Such a low resprouting rate means the resilience of the shrubland depends on seedling regeneration from aerial and soil seedbanks or colonization from plants outside the burned area. Woody species’ seedling densities were variable but generally low (25 m−2). The low number of resprouters, and reliance on seedlings for recovery, suggest the shrubland may not be as resilient to fire as mainland Australian montane shrubland, particularly given a warming climate and likely increase in fire frequency.


Fire Ecology ◽  
2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Willem A. Nieman ◽  
Brian W. van Wilgen ◽  
Alison J. Leslie

Abstract Background Fire is an important process that shapes the structure and functioning of African savanna ecosystems, and managers of savanna protected areas use fire to achieve ecosystem goals. Developing appropriate fire management policies should be based on an understanding of the determinants, features, and effects of prevailing fire regimes, but this information is rarely available. In this study, we report on the use of remote sensing to develop a spatially explicit dataset on past fire regimes in Majete Wildlife Reserve, Malawi, between 2001 and 2019. Moderate Resolution Imaging Spectroradiometer (MODIS) images were used to evaluate the recent fire regime for two distinct vegetation types in Majete Wildlife Reserve, namely savanna and miombo. Additionally, a comparison was made between MODIS and Visible Infrared Imager Radiometer Suite (VIIRS) images by separately evaluating selected aspects of the fire regime between 2012 and 2019. Results Mean fire return intervals were four and six years for miombo and savanna vegetation, respectively, but the distribution of fire return intervals was skewed, with a large proportion of the area burning annually or biennially, and a smaller proportion experiencing much longer fire return intervals. Variation in inter-annual rainfall also resulted in longer fire return intervals during cycles of below-average rainfall. Fires were concentrated in the hot-dry season despite a management intent to restrict burning to the cool-dry season. Mean fire intensities were generally low, but many individual fires had intensities of 14 to 18 times higher than the mean, especially in the hot-dry season. The VIIRS sensors detected many fires that were overlooked by the MODIS sensors, as images were collected at a finer scale. Conclusions Remote sensing has provided a useful basis for reconstructing the recent fire regime of Majete Wildlife Reserve, and has highlighted a current mismatch between intended fire management goals and actual trends. Managers should re-evaluate fire policies based on our findings, setting clearly defined targets for the different vegetation types and introducing flexibility to accommodate natural variation in rainfall cycles. Local evidence of the links between fires and ecological outcomes will require further research to improve fire planning.


2014 ◽  
Vol 23 (2) ◽  
pp. 234 ◽  
Author(s):  
Ellis Q. Margolis

Piñon–juniper (PJ) fire regimes are generally characterised as infrequent high-severity. However, PJ ecosystems vary across a large geographic and bio-climatic range and little is known about one of the principal PJ functional types, PJ savannas. It is logical that (1) grass in PJ savannas could support frequent, low-severity fire and (2) exclusion of frequent fire could explain increased tree density in PJ savannas. To assess these hypotheses I used dendroecological methods to reconstruct fire history and forest structure in a PJ-dominated savanna. Evidence of high-severity fire was not observed. From 112 fire-scarred trees I reconstructed 87 fire years (1547–1899). Mean fire interval was 7.8 years for fires recorded at ≥2 sites. Tree establishment was negatively correlated with fire frequency (r=–0.74) and peak PJ establishment was synchronous with dry (unfavourable) conditions and a regime shift (decline) in fire frequency in the late 1800s. The collapse of the grass-fuelled, frequent, surface fire regime in this PJ savanna was likely the primary driver of current high tree density (mean=881treesha–1) that is >600% of the historical estimate. Variability in bio-climatic conditions likely drive variability in fire regimes across the wide range of PJ ecosystems.


2016 ◽  
Vol 25 (11) ◽  
pp. 1117 ◽  
Author(s):  
Marie-Pierre Rogeau ◽  
Mike D. Flannigan ◽  
Brad C. Hawkes ◽  
Marc-André Parisien ◽  
Rick Arthur

Like many fire-adapted ecosystems, decades of fire exclusion policy in the Rocky Mountains and Foothills natural regions of southern Alberta, Canada are raising concern over the loss of ecological integrity. Departure from historical conditions is evaluated using median fire return intervals (MdFRI) based on fire history data from the Subalpine (SUB), Montane (MT) and Upper Foothills (UF) natural subregions. Fire severity, seasonality and cause are also documented. Pre-1948 MdFRI ranged between 65 and 85 years in SUB, between 26 and 35 years in MT and was 39 years in UF. The fire exclusion era resulted in a critical departure of 197–223% in MT (MdFRI = 84–104 years). The departure in UF was 170% (MdFRI = 104 years), while regions of continuous fuels in SUB were departed by 129% (MdFRI = 149 years). The most rugged region of SUB is within its historical range of variation with a departure of 42% (MdFRI = 121 years). More mixed-severity burning took place in MT and UF. SUB and MT are in a lightning shadow pointing to a predominance of anthropogenic burning. A summer fire season prevails in SUB, but occurs from spring to fall elsewhere. These findings will assist in developing fire and forest management policies and adaptive strategies in the future.


2009 ◽  
Vol 9 (5) ◽  
pp. 1579-1595 ◽  
Author(s):  
C. Galy-Lacaux ◽  
D. Laouali ◽  
L. Descroix ◽  
N. Gobron ◽  
C. Liousse

Abstract. Long-term precipitation chemistry have been recorded in the rural area of Banizoumbou (Niger), representative of a semi-arid savanna ecosystem. A total of 305 rainfall samples ~90% of the total annual rainfall) were collected from June 1994 to September 2005. From ionic chromatography, pH major inorganic and organic ions were detected. Rainwater chemistry is controlled by soil/dust emissions associated with terrigeneous elements represented by SO42−, Ca2+, Carbonates, K+ and Mg2+. It is found that calcium and carbonates represent ~40% of the total ionic charge. The second highest contribution is nitrogenous, with annual Volume Weighed Mean (VWM) for NO3− and NH4+ concentrations of 11.6 and 18.1 μeq.l−1, respectively. This is the signature of ammonia sources from animals and NOx emissions from savannas soil-particles rain-induced. The mean annual NH3 and NO2 air concentration are of 6 ppbv and 2.6 ppbv, respectively. The annual VWM precipitation concentration of sodium and chloride are both of 8.7 μeq.l−1 which reflects the marine signature of monsoonal and humid air masses. The median pH value is of 6.05. Acidity is neutralized by mineral dust, mainly carbonates, and/or dissolved gases such NH3. High level of organic acidity with 8μeq.l−1 and 5.2 μeq.l−1 of formate and acetate were also found. The analysis of monthly Black Carbon emissions and Fraction of Absorbed Photosynthetically Active Radiation (FAPAR) values show that both biogenic emission from vegetation and biomass burning could explain the rainfall organic acidity content. The interannual variability of the VWM concentrations around the mean (1994–2005) is between ±5% and ±30% and mainly due to variations of sources strength and rainfall spatio-temporal distribution. From 1994 to 2005, the total mean wet deposition flux in the Sahelian region is of 60.1 mmol.m−2.yr−1 ±25%. Finally, Banizoumbou measurements are compared to other long-term measurements of precipitation chemistry in the wet savanna of Lamto (Côte d'Ivoire) and in the forested zone of Zoétélé (Cameroon). The total chemical loading presents a maximum in the dry savanna and a minimum in the forest (from 143.7, 100.2 to 86.6 μeq.l−1), associated with the gradient of terrigeneous sources. The wet deposition fluxes present an opposite trend, with 60.0 mmol.m−2.yr−1 in Banizoumbou, 108.6 mmol.m−2.yr−1 in Lamto and 162.9 mmol.m−2.yr−1 in Zoétélé, controlled by rainfall gradient along the ecosystems transect.


Sign in / Sign up

Export Citation Format

Share Document