Neuroprotective effect of neferine, an alkaloid against the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine induced Parkinson's disease mouse model

2021 ◽  
Vol 17 (73) ◽  
pp. 186
Author(s):  
Shendong Jing ◽  
Zhenhai Wang ◽  
Jun Zhang ◽  
Xianfeng Li ◽  
Ruifei Huang
2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Young Cheul Chung ◽  
Yoon-Seong Kim ◽  
Eugene Bok ◽  
Tae Young Yune ◽  
Sungho Maeng ◽  
...  

The present study examined whether matrix metalloproteinase-3 (MMP-3) participates in the loss of dopaminergic (DA) neurons in the nigrostriatal pathway in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of Parkinson's disease with blood brain barrier (BBB) damage and infiltration of peripheral immune cells. Tyrosine hydroxylase (TH) immunostaining of brain sections from MPTP-treated mice showed that MPTP induced significant degeneration of nigrostriatal DA neurons. Moreover, FITC-labeled albumin detection and immunostaining revealed that MPTP caused damage to the BBB and increased the number of ED-1- and CD-3-immunopositive cells in the substantia nigra (SN). Genetic ablation of MMP-3 reduced the nigrostriatal DA neuron loss and improved motor function. This neuroprotective effect afforded by MMP-3 deletion was associated with the suppression of BBB disruption and a decrease in the number of ED-1- and CD-3-immunopositive cells in the SN. These data suggest that MMP-3 could play a crucial role in neurodegenerative diseases such as PD in which BBB damage and neuroinflammation are implicated.


2021 ◽  
Vol 11 (8) ◽  
pp. 1506-1516
Author(s):  
Xueqian Li ◽  
Chengzhi Zhao

Our current study aimed to assess the preventive and therapeutic impacts of catalpol on Parkinson’s disease (PD) and its possible mechanism. In this study, mice treated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) were employed to establish a PD model and then treated with catalpol followed by analysis of behavioral science by open field test, pole-climbing assay and rotarod performance test, ROS and SOD activity and expression of TH, DAT, VEGF and GAP43 by western blot or immunofluorescence. The results disclosed that catalpol can ameliorate the MPTP-triggered loss of dopamine (DA)-producing neurons, while it was able to enhance the expression of tyrosine hydroxylase (TH), accompanied by the activation of astrocytes and microglia. Catalpol treatment significantly retarded the oxidative stress induced by MPTP, along with elevated levels of VEGF and growth-associated protein 4 (GAP43). Additionally, catalpol treatment activated the MKK4/JNK/c-Jun signal pathway in PD mouse model, accompanied by reduced secretion of pro-inflammatory factors. Catalpol executed the anti-apoptotic and anti-oxidant impacts on MPTP-induced Parkinson’s model, suggesting that it might be a novel approach for treating PD in the future.


2013 ◽  
Vol 36 ◽  
pp. 63-71 ◽  
Author(s):  
Fabiana Morroni ◽  
Andrea Tarozzi ◽  
Giulia Sita ◽  
Cecilia Bolondi ◽  
Juan Manuel Zolezzi Moraga ◽  
...  

2021 ◽  
Vol 22 (21) ◽  
pp. 11328
Author(s):  
Helena Berlamont ◽  
Arnout Bruggeman ◽  
Eva Bauwens ◽  
Charysse Vandendriessche ◽  
Elien Clarebout ◽  
...  

The exact etiology of Parkinson’s disease (PD) remains largely unknown, but more and more research suggests the involvement of the gut microbiota. Interestingly, idiopathic PD patients were shown to have at least a 10 times higher prevalence of Helicobacter suis (H. suis) DNA in gastric biopsies compared to control patients. H. suis is a zoonotic Helicobacter species that naturally colonizes the stomach of pigs and non-human primates but can be transmitted to humans. Here, we investigated the influence of a gastric H. suis infection on PD disease progression through a 6-hydroxydopamine (6-OHDA) mouse model. Therefore, mice with either a short- or long-term H. suis infection were stereotactically injected with 6-OHDA in the left striatum and sampled one week later. Remarkably, a reduced loss of dopaminergic neurons was seen in the H. suis/6-OHDA groups compared to the control/6-OHDA groups. Correspondingly, motor function of the H. suis-infected 6-OHDA mice was superior to that in the non-infected 6-OHDA mice. Interestingly, we also observed higher expression levels of antioxidant genes in brain tissue from H. suis-infected 6-OHDA mice, as a potential explanation for the reduced 6-OHDA-induced cell loss. Our data support an unexpected neuroprotective effect of gastric H. suis on PD pathology, mediated through changes in oxidative stress.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Xiaoting Zhou ◽  
Jiachen Lu ◽  
Kehong Wei ◽  
Jing Wei ◽  
Puyuan Tian ◽  
...  

Parkinson’s disease (PD) is a common degenerative disease of the central nervous system. Although some drugs can alleviate the progress of PD, their long-term use will lead to complications, so it is still necessary to find new drugs to delay or cure PD effectively. In view of the difficulty in developing new drugs, it is imperative to discover new functions of existing compounds that could be used to treat PD. In this study, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) was used to induce PD symptoms in a mouse model. Subsequently, these mice were treated with the antibiotic ceftriaxone. Ceftriaxone alleviated the behavioural and neuropathological changes induced by MPTP, downregulated the expression of glial fibrillary acidic protein (GFAP) and ionised calcium-binding adapter molecule 1 (Iba1) as markers of astroglia and microglia, respectively, and reduced the expression of neuroinflammation-related Toll-like receptor 4 (TLR4), myeloid differentiation primary response 88 (MyD88), and phosphorylated nuclear factor kappa-B (p-NF-κB)/NF-κB in the brain of PD mice. In addition, ceftriaxone reduced the abundance of pathogenic bacteria of the genus Proteus and increased the abundance of probiotic Akkermansia. Finally, ceftriaxone treatment increased the expression of the tight junction proteins zona occludens-1(ZO-1) and occludin in the colon, decreased the expression of the inflammation-related proteins TLR4, MyD88, and NF-κB in the colon, and decreased the serum concentration of the proinflammatory cytokines interleukin-1β (IL-1β), IL-6, and tumour necrosis factor-α (TNF-α). These results indicate that ceftriaxone had a neuroprotective effect on MPTP-induced PD mice, and its neuroprotective effect could be through regulating inflammation and intestinal microbiota. While we showed that ceftriaxone exerts a neuroprotective effect in an MPTP-induced PD mouse model, our findings are limited to the short-term effects of ceftriaxone. Additional work using transgenic mice is required to determine the long-term effects of ceftriaxone. In addition, the dose and frequency of ceftriaxone use should be evaluated.


Sign in / Sign up

Export Citation Format

Share Document