Glabridin downregulates lipopolysaccharide-induced oxidative stress and neuroinflammation in BV-2 microglial cells via suppression of nuclear factor-κB signaling pathway

2020 ◽  
Vol 16 (71) ◽  
pp. 675
Author(s):  
Lianmei Zhong ◽  
Yan Wu ◽  
Jia Geng ◽  
Xiaoguang Lei ◽  
Qian Wu ◽  
...  
2020 ◽  
Vol 18 (3) ◽  
pp. 266-272
Author(s):  
Song Yanfang ◽  
Yan Shufang ◽  
Zhang Hong ◽  
Liu Rui ◽  
An Xin ◽  
...  

Dose-dependent nephrotoxicity limits the therapeutic use of cisplatin in tumor chemotherapy. Natural compounds show a protective effect against cisplatin-induced nephrotoxicity. Rhoifolin is a flavone glycoside that demonstrates antioxidant and antiproliferative effects. The influence and mechanism of rhoifolin on cisplatin-induced nephrotoxicity were investigated in this study. First, a rat model of cisplatin-induced nephrotoxicity was established. Intraperitoneal administration of cisplatin induced renal damage in rats as demonstrated by a decrease in body weight, increase in blood urea, nitrogen and creatinine, and destruction of histological integrity. However, treatment with rhoifolin attenuated cisplatin-induced nephrotoxicity. Second, cisplatin induced oxidative stress and inflammatory response in rats as demonstrated by a decrease in superoxide dismutase, glutathione, glutathione S-transferase and catalase, and an increase in malondialdehyde, tumor necrosis factor-α, and interleukin-6. Also, the administration of rhoifolin led to alleviation of cisplatin-induced oxidative stress and inflammatory response. Finally, cisplatin activated the nuclear factor-kappa B signaling pathway via degradation and phosphorylation of IκBα (inhibitor of kappa B). Administration of rhoifolin inhibited nuclear translocation of NF-κB via down-regulation of phospho-IκBα and phospho-p65, as well as up-regulation of IκBα. In conclusion, the administration of rhoifolin attenuated cisplatin-induced renal damage, oxidative stress and inflammatory response through inhibition of the NF-κB signaling pathway, suggesting a potential adjunct candidate for cisplatin in tumor treatment.


2016 ◽  
Vol 225 ◽  
pp. 19-30 ◽  
Author(s):  
Kun-Cheng Li ◽  
Yu-Ling Ho ◽  
Cing-Yu Chen ◽  
Wen-Tsong Hsieh ◽  
Yuan-Shiun Chang ◽  
...  

Endocrinology ◽  
2006 ◽  
Vol 147 (12) ◽  
pp. 5967-5974 ◽  
Author(s):  
Manuela Aragno ◽  
Raffaella Mastrocola ◽  
Claudio Medana ◽  
Maria Graziella Catalano ◽  
Ilenia Vercellinatto ◽  
...  

Oxidative stress plays a key role in the pathogenesis of diabetic cardiomyopathy, which is characterized by myocyte loss and fibrosis, finally resulting in heart failure. The study looked at the downstream signaling whereby oxidative stress leads to reduced myocardial contractility in the left ventricle of diabetic rats and the effects of dehydroepiandrosterone (DHEA), which production is suppressed in the failing heart and prevents the oxidative damage induced by hyperglycemia in several experimental models. DHEA was given orally at a dose of 4 mg/rat per day for 21 d to rats with streptozotocin (STZ)-induced diabetes and genetic diabetic-fatty (ZDF) rats. Oxidative balance, advanced glycated end products (AGEs) and AGE receptors, cardiac myogenic factors, and myosin heavy-chain gene expression were determined in the left ventricle of treated and untreated STZ-diabetic rats and ZDF rats. Oxidative stress induced by chronic hyperglycemia increased AGE and AGE receptors and led to activation of the pleoitropic transcription factor nuclear factor-κB. Nuclear factor-κB activation triggered a cascade of signaling, which finally led to the switch in the cardiac myosin heavy-chain (MHC) gene expression from the α-MHC isoform to the β-MHC isoform. DHEA treatment, by preventing the activation of the oxidative pathways induced by hyperglycemia, counteracted the enhanced AGE receptor activation in the heart of STZ-diabetic rats and ZDF rats and normalized downstream signaling, thus avoiding impairment of the cardiac myogenic factors, heart autonomic nervous system and neural crest derivatives (HAND) and myogenic enhancer factor-2, and the switch in MHC gene expression, which are the early events in diabetic cardiomyopathy.


Antioxidants ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 856
Author(s):  
Eui-Jeong Han ◽  
Ilekuttige Priyan Shanura Fernando ◽  
Hyun-Soo Kim ◽  
Dae-Sung Lee ◽  
Areum Kim ◽  
...  

The present study evaluated the effects of (–)-loliolide isolated from Sargassum horneri (S. horneri) against oxidative stress and inflammation, and its biological mechanism in interferon (IFN)-γ/tumor necrosis factor (TNF)-α-stimulated HaCaT keratinocytes. The results showed that (–)-loliolide improved the cell viability by reducing the production of intracellular reactive oxygen species (ROS) in IFN-γ/TNF-α-stimulated HaCaT keratinocytes. In addition, (–)-loliolide effectively decreased the expression of inflammatory cytokines (interleukin (IL)-4 IL-6, IL-13, IFN-γ and TNF-α) and chemokines (CCL11 (Eotaxin), macrophage-derived chemokine (MDC), regulated on activation, normal T cell expressed and secreted (RANTES), and thymus and activation-regulated chemokine (TARC)), by downregulating the expression of epidermal-derived initial cytokines (IL-25, IL-33 and thymic stromal lymphopoietin (TSLP)). Furthermore, (–)-loliolide suppressed the activation of mitogen-activated protein kinase (MAPK) and nuclear factor-κB (NF-κB) signaling, whereas it activated nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) signaling. Interestingly, the cytoprotective effects of (–)-loliolide against IFN-γ/TNF-α stimulation were significantly blocked upon inhibition of HO-1. Taken together, these results suggest that (–)-loliolide effectively suppressed the oxidative stress and inflammation by activating the Nrf2/HO-1 signaling in IFN-γ/TNF-α-stimulated HaCaT keratinocytes.


Sign in / Sign up

Export Citation Format

Share Document