scholarly journals Pretreatment with probiotics ameliorate gut health and necrotic enteritis in broiler chickens, a substitute to antibiotics

AMB Express ◽  
2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Danish Sharafat Rajput ◽  
Dong Zeng ◽  
Abdul Khalique ◽  
Samia Sharafat Rajput ◽  
Hesong Wang ◽  
...  

AbstractNecrotic enteritis (NE) is being considered as one of the most important intestinal diseases in the recent poultry production systems, which causes huge economic losses globally. NE is caused by Clostridium perfringens, a pathogenic bacterium, and normal resident of the intestinal microflora of healthy broiler chickens. Gastrointestinal tract (GIT) of broiler chicken is considered as the most integral part of pathogen’s entrance, their production and disease prevention. Interaction between C. perfringens and other pathogens such as Escherichia coli and Salmonella present in the small intestine may contribute to the development of NE in broiler chickens. The antibiotic therapy was used to treat the NE; however European Union has imposed a strict ban due to the negative implications of drug resistance. Moreover, antibiotic growth promoters cause adverse effects on human health as results of withdrawal of antibiotic residues in the chicken meat. After restriction on use of antibiotics, numerous studies have been carried out to investigate the alternatives to antibiotics for controlling NE. Thus, possible alternatives to prevent NE are bio-therapeutic agents (Probiotics), prebiotics, organic acids and essential oils which help in nutrients digestion, immunity enhancement and overall broiler performance. Recently, probiotics are extensively used alternatives to antibiotics for improving host health status and making them efficient in production. The aim of review is to describe a replacement to antibiotics by using different microbial strains as probiotics such as bacteria and yeasts etc. having bacteriostatic properties which inhibit growth of pathogens and neutralize the toxins by different modes of action.

2020 ◽  
Vol 20 (2) ◽  
pp. 325-341
Author(s):  
Harry A. Aguzey ◽  
Zhenhua Gao ◽  
Wu Haohao ◽  
Cheng Guilan ◽  
Wu Zhengmin ◽  
...  

AbstractThe effect of dietary arginine on disease prevention, immune system modulation, the gut micro-biota composition and growth of broiler chicken was reviewed. The main aim of poultry production is the maximization of profit at the least possible cost. This objective can mainly be achieved by ensuring that there is no interference in growth or disease outbreak and by feeding chicken with the best possible level of nutrients. With the ban on antibiotic growth promoters, attention is shifted towards other nutrition methods to prevent diseases and promote growth. More attention is therefore given to protein diets in animal nutrition due to their importance as essential part of active biological compounds in the body, assisting in the breakdown of body tissue and helping in the physiological processes of the animal. Arginine plays important function in serving as building blocks of proteins and polypeptides. It performs other roles during the regulation of important biochemical functions such as maintenance, growth, reproduction and immunity. Arginine cannot be synthesized by the body so it has to be supplemented in the diet. When arginine is supplemented above the recommended level, the gut mucosa is protected, immunosuppression is alleviated, diseases like necrotic enteritis, infectious bursal disease and coccidiosis in broiler chickens are prevented. There is an improvement in growth resulting from the increase in intestinal absorption, barrier function and microbiota composition.


2021 ◽  
Author(s):  
Enzo A Redondo ◽  
Leandro M Redondo ◽  
Octavio A Bruzzone ◽  
Juan M Diaz-Carrasco ◽  
Claudio Cabral ◽  
...  

Consumer demands and increased regulations on the use of antimicrobials in farm animals accentuated the need to develop strategies to replace antimicrobial growth promoters (AGPs) in food-producing animals. The present study evaluates the productive and gut health outcomes during the implementation of AGPs free programs based on the inclusion of a tannin blend compared with AGPs based program under commercial conditions. In the first trial, 6 farms were randomly assigned to AGP or tannin-based programs. In a second trial, both programs were applied simultaneously in one farm and the results were studied over 1 year. Although productive results from both trials were similar among treatments, evaluations of gut health indicators show improvements in the tannins treated flocks. Frequency and severity of intestinal gross lesions were reduced in jejunum (42% vs 23%; p<0.05 – 1.37 vs. 0.73; p<0.01, respectively) and ileum (25% vs. 10%; p<0.0.5 – 1.05 vs. 0.58; p<0.01) in tannins treated birds. Results from 16S studies, show that cecal microbiota diversity was not differentially affected by AGPs or tannins, but changes in the relative abundance of certain taxa were described, including Lactobacillus and Bifidobacterium groups. Additional evaluations using an in vivo model for C. perfringens necrotic enteritis showed that tannins treated birds had reduced incidence of gross lesions in jejunum (43.75 vs. 74.19%; p<0.01) and ileum (18.75% vs. 45.16%; p<0.05) compared with control. These results suggest that AGPs can be replaced by tannins feed additives, and contribute in the implementation of antimicrobial-free programs in broilers without affecting health or performance.


2009 ◽  
Vol 2009 ◽  
pp. 205-205
Author(s):  
H Ziaie ◽  
M A Karimi Torshizi ◽  
M Bashtani ◽  
H Farhangfar ◽  
P Rowlinson ◽  
...  

The prophylactic use of antibiotic (as growth promoters) in animal feeds has made intensive farming possible and improved feed conversion. In the presence of low levels of an antibiotic, resistant cells survive and grow which produces an antibiotic-resistant population. Consequently, the use of antibiotic for broilers has been limited. Therefore, a number of studies on alternative products that can aid promotion of growth, improved feed utilization, and maintenance of gut health have taken placed (Hernandez et al, 2004). Herbs and organic acid have received an increased attention as an alternative to antibiotics (Craig, 1999; Ricke, 2003). The main aim of the present research was to evaluate the efficiency of alternative antibiotic growth promoters on Ross broiler performance.


2021 ◽  
Vol 33 ◽  
pp. 04005
Author(s):  
Tri Untari ◽  
Okti Herawati ◽  
Marla Anggita ◽  
Widya Asmara ◽  
Agnesia Endang Tri Hastuti Wahyuni ◽  
...  

Chicken is a major source of animal protein consumption in Indonesia. The problem facing the poultry industry is the incidence of resistance which increases mortality of the chicken production. One of the causes of resistance case is the use of antibiotics in feed additives. The public understanding about the effects of the use of antibiotic growth promoters (AGP) in chickens in antibiotic resistance and the digestive tract of chicken needs to be done to avoid the impact on economic losses and health problems. This study aims to provide an understanding of the effects of the use of antibiotic growth promoters (AGP) on antibiotic resistance and the digestive tract of broiler chickens. This study was carried out at a broiler chicken farm in Sleman, Yogyakarta. Based on the histopathological result of the digestive tract of chickens that were given antibiotics as AGP, there was no inflammation occurs, but the administration of antibiotics caused antibiotic resistance in various type of antibiotics including tetracycline (90% resistance), streptomycin (60% resistance), amoxicillin (50% resistance), erythromycin (80% resistance), and no resistance for gentamycin.


Planta Medica ◽  
2021 ◽  
Author(s):  
Urszula Latek ◽  
Magdalena Chłopecka ◽  
Wojciech Karlik ◽  
Marta Mendel

AbstractAfter the European Union ban of antibiotic growth promoters, works on different methods of improving gut health have intensified. The poultry industry is struggling with problems that were previously controlled by antibiotic growth promoters, therefore the search for optimal solutions continues. Simultaneously, there is also increasing social pressure to minimize the use of antibiotics and replace them with alternative feed additives. A variety of available alternatives is considered safe by consumers, among which phytogenics play a significant role. However, there are still some limitations that need to be considered. The most questionable are the issues related to bioavailability, metabolism of plant derivatives in birds, and the difficulty of standardizing commercial products. There is still a need for more evidence-based recommendations for the use of phytogenics in livestock. On the other hand, a positive influence of phytogenic compounds on the health of poultry has been previously described by many researchers and practical application of these compounds has auspicious perspectives in poultry production. Supplementation with phytogenic feed additives has been shown to protect birds from various environmental threats leading to impaired intestinal barrier function. Phytogenic feed additives have the potential to improve the overall structure of intestinal mucosa as well as gut barrier function on a molecular level. Recognition of the phytogenicsʼ effect on the components of the intestinal barrier may enable the selection of the most suitable ones to alleviate negative effects of different agents. This review aims to summarize current knowledge of the influence of various phytogenic constituents on the intestinal barrier and health of poultry.


2017 ◽  
Vol 17 (2) ◽  
pp. 317-335 ◽  
Author(s):  
Michalina Adaszyńska-Skwirzyńska ◽  
Danuta Szczerbińska

Abstract Biological activity of volatile plant metabolites is the property that can potentially find application in animal nutrition. Nowadays, the use of bioactive compounds is encouraged in many areas of industry and agriculture, since these substances have similar properties as withdrawn antibiotic growth promoters. Meat poultry production is focused on the maximization of performance parameters, namely rapid chicken growth with low feed consumption, and with the optimum health status of the flock. Essential oils can stimulate the growth and functioning of the body, which translates into both chicken’s health and enhanced production parameters. The substances are characterized by a range of effects, are easily biodegradable, and do not usually require a waiting period - hence they can be used in breeding broiler chickens. Given the increasing restrictions imposed on poultry production in terms of food safety and ethical aspects of husbandry, it seems appropriate to look for the use of new, natural substances to be applied in animal production. The article presents the characteristics of essential oils in this context, with a particular focus on their antimicrobial and immunostimulatory properties. The paper also describes production applications of essential oils tested in experiments on hybrid Ross 308 and Cobb 500 chickens.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Aijuan Zheng ◽  
Anrong Zhang ◽  
Zhimin Chen ◽  
Shoaib Ahmed Pirzado ◽  
Wenhuan Chang ◽  
...  

Abstract Background Immunological stress decreases feed intake, suppresses growth and induces economic losses. However, the underlying molecular mechanism remains unclear. Label-free liquid chromatography and mass spectrometry (LC-MS) proteomics techniques were employed to investigate effects of immune stress on the hepatic proteome changes of Arbor Acres broilers (Gallus Gallus domesticus) challenged with Escherichia coli lipopolysaccharide (LPS). Results Proteomic analysis indicated that 111 proteins were differentially expressed in the liver of broiler chickens from the immune stress group. Of these, 28 proteins were down-regulated, and 83 proteins were up-regulated in the immune stress group. Enrichment analysis showed that immune stress upregulated the expression of hepatic proteins involved in defense function, amino acid catabolism, ion transport, wound healing, and hormone secretion. Furthermore, immune stress increased valine, leucine and isoleucine degradation pathways. Conclusion The data suggests that growth depression of broiler chickens induced by immune stress is triggered by hepatic proteome alterations, and provides a new insight into the mechanism by which immune challenge impairs poultry production.


2009 ◽  
Vol 2009 ◽  
pp. 233-233
Author(s):  
S N Mousavi ◽  
M Shivazad ◽  
N Ghazvini

The subtherapeutic use of antibiotics in animals has been under scientific and public scrutiny as antibiotic growth promoters (AGP) have been linked to the development of antibiotic resistance in bacteria, which poses a threat to human health (Smith et al., 2003). Short chain fatty acids such as butyrate are considered as potential alternative to AGP, In addition to its bactericidal activity; butyrate appears to play a role in development of the intestinal epithelium (Leeson 2005). Prebiotics (e.g. mannanoligosaccharides, MOS) are nondigestible feed ingredients that can selectively stimulate growth or metabolic activity of a limited number of intestinal microorganisms (Gibson and Roberfroid, 1995). This study was, therefore, conducted to investigate effectiveness of mannanoligosaccharides and butyric acid as potential alternatives to AGP in broilers.


2019 ◽  
Author(s):  
Philip J. Richards ◽  
Geraldine M. Flaujac Lafontaine ◽  
Phillippa L. Connerton ◽  
Lu Liang ◽  
Karishma Asiani ◽  
...  

ABSTRACTImprovements in growth performance and health are key goals in broiler chicken production. Inclusion of prebiotic galacto-oligosaccharides in broiler feed enhanced the growth rate and feed conversion of chickens relative to a calorie-matched control diet. Comparison of the cecal microbiota identified key differences in abundance ofLactobacillusspp. Increased levels ofL. johnsoniiin GOS-fed juvenile birds at the expense ofL. crispatuswas linked to improved performance (growth rate and market weight). Investigation of the innate immune responses highlighted increases of ileal and cecal IL-17A gene expression counterposed to a decrease in IL-10 and IL-17F. Quantification of the autochthonousLactobacillusssp. revealed a correlation between bird performance andL. johnsoniiabundance. Shifts in the cecal populations of keyLactobacillusspp. of juvenile birds primed intestinal innate immunity without harmful pathogen challenge.IMPORTANCEImprovements in the growth rate of broiler chickens can be achieved through dietary manipulation of the naturally occurring bacterial populations whilst mitigating the withdrawal of antibiotic growth promoters. Prebiotic galacto-oligosaccharides (GOS) are manufactured as a by-product of dairy cheese production, which can be incorporated in the diets of juvenile chickens to improve their health and performance. This study investigates the key mechanisms behind this progression and pin pointsL. johnsoniias a key species that facilitates the enhancements in growth rate and gut health. It also relates the role of the innate immune system in the response to the GOS diet.


2021 ◽  
Author(s):  
Avishek Biswas ◽  
Namit Mohan ◽  
Kapil Dev ◽  
N A Mir ◽  
Ashok Kumar Tiwari

Abstract Antibiotics have revolutionized the intensive poultry production system as a feed additive by promoting growth, production and meat quality through improving gut health and reduction of sub-clinical infections during last five decades. However, currently, the usage of antibiotics in poultry production is under severe scientific and public scrutiny, because antibiotic growth promoter (AGP) has been linked to the possible development of antibiotic-resistant pathogens, which may pose a threat to human health. After European Union ban on in feed antibiotics as growth promoter in poultry, since 2006, prebiotics offer a potential substitute to in feed antibiotics. In this effort, the objective of this present study was to investigate the potentiality of prebiotics (mannan oligosaccharides-MOS and fructo-oligosaccharides-FOS) in replacement of antibiotic growth promoter and their relationship with physio-biochemical indices, antioxidant and oxidative stability and carcass traits of broiler chickens meat. 240 day-old broiler chicks (1 d) of uniform body weight were divided into 30 replicate groups having 8 birds in each. Six corn based dietary treatments were formulated viz. T1 (control diet), T2 (T1 + Bacitracin methylene di-salicylate @ 20 mg/kg diet), T3 (T1 + 0.1% MOS), T4 (T1 + 0.2% MOS), T5 (T1 + 0.1% FOS), and T6 (T1 + 0.2% FOS). Significant (P<0.05) increase in cut up part yields (%) and reduction in cholesterol and fat content in T4 (0.2 % MOS) group. The water holding capacity (WHC) and extract release volume (ERV) were increase (P<0.05) in 0.1 or 0.2 % MOS supplemented group. DPPH (1, 1-diphenyl-2-picrylhydrazy) was higher (P<0.05) and lipid oxidation (free fatty acid and thio-barbituric acid reactive substances) was lower (P<0.05) in T4 group. The standard plate count (SPC), staphylococcus and coliform counts were decreased (P<0.05) in T3 or T4 group. Thus, it can be concluded that mannan oligosaccharides (MOS) may be incorporated at 0.2% level in diet for improved physio-biochemical indices, antioxidant and oxidative stability and carcass characteristics of broiler chickens meat and it may be suitable replacer of antibiotic growth promoter.


Sign in / Sign up

Export Citation Format

Share Document