scholarly journals Molecular Modeling of Differentially Phosphorylated Serine 10 and Acetylated lysine 9/14 of Histone H3 Regulates their Interactions with 14-3-3ζ, MSK1, and MKP1

2013 ◽  
Vol 7 ◽  
pp. BBI.S12449 ◽  
Author(s):  
Ajit K. Sharma ◽  
Abhilasha Mansukh ◽  
Ashok Varma ◽  
Nikhil Gadewal ◽  
Sanjay Gupta

Histone modifications occur in precise patterns, with several modifications known to affect the binding of proteins. These interactions affect the chromatin structure, gene regulation, and cell cycle events. The dual modifications on the H3 tail, serine10 phosphorylation, and lysine14 acetylation (H3Ser10PLys14Ac) are reported to be crucial for interaction with 14-3-3ζ. However, the mechanism by which H3Ser10P along with neighboring site-specific acetylation(s) is targeted by its regulatory proteins, including kinase and phosphatase, is not fully understood. We carried out molecular modeling studies to understand the interaction of 14-3-3ζ, and its regulatory proteins, mitogen-activated protein kinase phosphatase-1 (MKP1), and mitogen- and stress-activated protein kinase-1 (MSK1) with phosphorylated H3Ser10 alone or in combination with acetylated H3Lys9 and Lys14. In silico molecular association studies suggested that acetylated Lys14 and phosphorylated Ser10 of H3 shows the highest binding affinity towards 14-3-3ζ. In addition, acetylation of H3Lys9 along with Ser10PLys14Ac favors the interaction of the phosphatase, MKP1, for dephosphorylation of H3Ser10P. Further, MAP kinase, MSK1 phosphorylates the unmodified H3Ser10 containing N-terminal tail with maximum affinity compared to the N-terminal tail with H3Lys9AcLys14Ac. The data clearly suggest that opposing enzymatic activity of MSK1 and MKP1 corroborates with non-acetylated and acetylated, H3Lys9Lys14, respectively. Our in silico data highlights that site-specific phosphorylation (H3Ser10P) and acetylation (H3Lys9 and H3Lys14) of H3 are essential for the interaction with their regulatory proteins (MKP1, MSK1, and 14-3-3ζ) and plays a major role in the regulation of chromatin structure.

2002 ◽  
Vol 366 (3) ◽  
pp. 737-744 ◽  
Author(s):  
Takanori KITAMURA ◽  
Kazuhiro KIMURA ◽  
Bae Dong JUNG ◽  
Kennedy MAKONDO ◽  
Naoki SAKANE ◽  
...  

Proinsulin C-peptide has been reported to have some biological activities and to be possibly involved in the development of diabetic microangiopathy. In the present study, we examined the effects of C-peptide on the mitogen-activated protein kinase pathway in LEII mouse lung capillary endothelial cells. Stimulation of the cells with C-peptide increased both p38 mitogen-activated protein kinase (p38MAPK) and extracellular signal-regulated kinase (ERK1/2) activities and activity-related site-specific phosphorylation of the respective kinases in a concentration-dependent manner, but failed to activate c-Jun N-terminal kinase. Stimulation of the cells with C-peptide also induced site-specific phosphorylation of cAMP response element (CRE)-binding protein (CREB)/activating transcription factor 1 (ATF1), and thereby binding of these transcription factors to CRE. Among three CREB kinases tested, phosphorylation of mitogen-activated protein kinase-activated protein kinase 2 (MAPKAP-K2) was induced after stimulation with C-peptide. The phosphorylation of CREB, ATF1 and MAPKAP-K2 were inhibited by SB203580, a p38MAPK inhibitor, but not by PD98059, an ERK kinase inhibitor. These results indicate that C-peptide activates p38MAPK followed by MAPKAP-K2 to enhance DNA—CREB/ATF1 interactions.


2001 ◽  
Vol 276 (13) ◽  
pp. 10314-10319 ◽  
Author(s):  
Naoya Sawamura ◽  
Jian-Sheng Gong ◽  
William S. Garver ◽  
Randall A. Heidenreich ◽  
Haruaki Ninomiya ◽  
...  

2002 ◽  
Vol 13 (3) ◽  
pp. 805-816 ◽  
Author(s):  
Janet Quinn ◽  
Victoria J. Findlay ◽  
Keren Dawson ◽  
Jonathan B.A. Millar ◽  
Nic Jones ◽  
...  

The signaling pathways that sense adverse stimuli and communicate with the nucleus to initiate appropriate changes in gene expression are central to the cellular stress response. Herein, we have characterized the role of the Sty1 (Spc1) stress-activated mitogen-activated protein kinase pathway, and the Pap1 and Atf1 transcription factors, in regulating the response to H2O2 in the fission yeast Schizosaccharomyces pombe. We find that H2O2 activates the Sty1 pathway in a dose-dependent manner via at least two sensing mechanisms. At relatively low levels of H2O2, a two component-signaling pathway, which feeds into either of the two stress-activated mitogen-activated protein kinase kinase kinases Wak1 or Win1, regulates Sty1 phosphorylation. In contrast, at high levels of H2O2, Sty1 activation is controlled predominantly by a two-component independent mechanism and requires the function of both Wak1 and Win1. Individual transcription factors were also found to function within a limited range of H2O2 concentrations. Pap1 activates target genes primarily in response to low levels of H2O2, whereas Atf1 primarily controls the transcriptional response to high concentrations of H2O2. Our results demonstrate that S. pombe uses a combination of stress-responsive regulatory proteins to gauge and effect the appropriate transcriptional response to increasing concentrations of H2O2.


1996 ◽  
Vol 271 (35) ◽  
pp. 21108-21113 ◽  
Author(s):  
Mamoru Matsubara ◽  
Masashi Kusubata ◽  
Koichi Ishiguro ◽  
Tsuneko Uchida ◽  
Koiti Titani ◽  
...  

Biomolecules ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1670
Author(s):  
Amit Kumar Halder ◽  
M. Natália D. S. Cordeiro

The inhibitors of two isoforms of mitogen-activated protein kinase-interacting kinases (i.e., MNK-1 and MNK-2) are implicated in the treatment of a number of diseases including cancer. This work reports, for the first time, a multi-target (or multi-tasking) in silico modeling approach (mt-QSAR) for probing the inhibitory potential of these isoforms against MNKs. Linear and non-linear mt-QSAR classification models were set up from a large dataset of 1892 chemicals tested under a variety of assay conditions, based on the Box–Jenkins moving average approach, along with a range of feature selection algorithms and machine learning tools, out of which the most predictive one (>90% overall accuracy) was used for mechanistic interpretation of the likely inhibition of MNK-1 and MNK-2. Considering that the latter model is suitable for virtual screening of chemical libraries—i.e., commercial, non-commercial and in-house sets, it was made publicly accessible as a ready-to-use FLASK-based application. Additionally, this work employed a focused kinase library for virtual screening using an mt-QSAR model. The virtual hits identified in this process were further filtered by using a similarity search, in silico prediction of drug-likeness, and ADME profiles as well as synthetic accessibility tools. Finally, molecular dynamic simulations were carried out to identify and select the most promising virtual hits. The information gathered from this work can supply important guidelines for the discovery of novel MNK-1/2 inhibitors as potential therapeutic agents.


Sign in / Sign up

Export Citation Format

Share Document