scholarly journals Beyond the Ribosome: Extra-translational Functions of tRNA Fragments

2016 ◽  
Vol 11s1 ◽  
pp. BMI.S35904 ◽  
Author(s):  
Kevin W. Diebel ◽  
Kun Zhou ◽  
Aaron B. Clarke ◽  
Lynne T. Bemis

High-throughput sequencing studies of small RNAs reveal a complex milieu of noncoding RNAs in biological samples. Early data analysis was often limited to microRNAs due to their regulatory nature and potential as biomarkers; however, many more classes of noncoding RNAs are now being recognized. A class of fragments initially excluded from analysis were those derived from transfer RNAs (tRNAs) because they were thought to be degradation products. More recently, critical cellular function has been attributed to tRNA fragments (tRFs), and their conservation across all domains of life has propelled them into an emerging area of scientific study. The biogenesis of tRFs is currently being elucidated, and initial studies show that a diverse array of tRFs are genera ted from all parts of a tRNA molecule. The goal of this review was to present what is currently known about tRFs and their potential as biomarkers for the earlier detection of disease.

2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Xiaoyu Yang ◽  
Chenjiang You ◽  
Xufeng Wang ◽  
Lei Gao ◽  
Beixin Mo ◽  
...  

Abstract Background Small RNAs (sRNAs) including microRNAs (miRNAs) and small interfering RNAs (siRNAs) serve as core players in gene silencing at transcriptional and post-transcriptional levels in plants, but their subcellular localization has not yet been well studied, thus limiting our mechanistic understanding of sRNA action. Results We investigate the cytoplasmic partitioning of sRNAs and their targets globally in maize (Zea mays, inbred line “B73”) and rice (Oryza sativa, cv. “Nipponbare”) by high-throughput sequencing of polysome-associated sRNAs and 3′ cleavage fragments, and find that both miRNAs and a subset of 21-nucleotide (nt)/22-nt siRNAs are enriched on membrane-bound polysomes (MBPs) relative to total polysomes (TPs) across different tissues. Most of the siRNAs are generated from transposable elements (TEs), and retrotransposons positively contributed to MBP overaccumulation of 22-nt TE-derived siRNAs (TE-siRNAs) as opposed to DNA transposons. Widespread occurrence of miRNA-mediated target cleavage is observed on MBPs, and a large proportion of these cleavage events are MBP-unique. Reproductive 21PHAS (21-nt phasiRNA-generating) and 24PHAS (24-nt phasiRNA-generating) precursors, which were commonly considered as noncoding RNAs, are bound by polysomes, and high-frequency cleavage of 21PHAS precursors by miR2118 and 24PHAS precursors by miR2275 is further detected on MBPs. Reproductive 21-nt phasiRNAs are enriched on MBPs as opposed to TPs, whereas 24-nt phasiRNAs are nearly completely devoid of polysome occupancy. Conclusions MBP overaccumulation is a conserved pattern for cytoplasmic partitioning of sRNAs, and endoplasmic reticulum (ER)-bound ribosomes function as an independent regulatory layer for miRNA-induced gene silencing and reproductive phasiRNA biosynthesis in maize and rice.


Genomics Data ◽  
2015 ◽  
Vol 3 ◽  
pp. 1-3 ◽  
Author(s):  
Muhammad Awais Ghani ◽  
Junxing Li ◽  
Linli Rao ◽  
Muhammad Ammar Raza ◽  
Liwen Cao ◽  
...  

2017 ◽  
Vol 83 (17) ◽  
Author(s):  
Francesca De Filippis ◽  
Manolo Laiola ◽  
Giuseppe Blaiotta ◽  
Danilo Ercolini

ABSTRACT Target-gene amplicon sequencing is the most exploited high-throughput sequencing application in microbial ecology. The targets are taxonomically relevant genes, with 16S rRNA being the gold standard for bacteria. As for fungi, the most commonly used target is the internal transcribed spacer (ITS). However, the uneven ITS length among species may promote preferential amplification and sequencing and incorrect estimation of their abundance. Therefore, the use of different targets is desirable. We evaluated the use of three different target amplicons for the characterization of fungal diversity. After an in silico primer evaluation, we compared three amplicons (the ITS1-ITS2 region [ITS1-2], 18S ribosomal small subunit RNA, and the D1/D2 domain of the 26S ribosomal large subunit RNA), using biological samples and a mock community of common fungal species. All three targets allowed for accurate identification of the species present. Nevertheless, high heterogeneity in ITS1-2 length was found, and this caused an overestimation of the abundance of species with a shorter ITS, while both 18S and 26S amplicons allowed for more reliable quantification. We demonstrated that ITS1-2 amplicon sequencing, although widely used, may lead to an incorrect evaluation of fungal communities, and efforts should be made to promote the use of different targets in sequencing-based microbial ecology studies. IMPORTANCE Amplicon-sequencing approaches for fungi may rely on different targets affecting the diversity and abundance of the fungal species. An increasing number of studies will address fungal diversity by high-throughput amplicon sequencing. The description of the communities must be accurate and reliable in order to draw useful insights and to address both ecological and biological questions. By analyzing a mock community and several biological samples, we demonstrate that using different amplicon targets may change the results of fungal microbiota analysis, and we highlight how a careful choice of the target is fundamental for a thorough description of the fungal communities.


Genomics ◽  
2017 ◽  
Vol 109 (2) ◽  
pp. 83-90 ◽  
Author(s):  
Yan Guo ◽  
Yulin Dai ◽  
Hui Yu ◽  
Shilin Zhao ◽  
David C. Samuels ◽  
...  

2020 ◽  
Author(s):  
Emily N. Junkins ◽  
Bradley S. Stevenson

AbstractMolecular techniques continue to reveal a growing disparity between the immense diversity of microbial life and the small proportion that is in pure culture. The disparity, originally dubbed “the great plate count anomaly” by Staley and Konopka, has become even more vexing given our increased understanding of the importance of microbiomes to a host and the role of microorganisms in the vital biogeochemical functions of our biosphere. Searching for novel antimicrobial drug targets often focuses on screening a broad diversity of microorganisms. If diverse microorganisms are to be screened, they need to be cultivated. Recent innovative research has used molecular techniques to assess the efficacy of cultivation efforts, providing invaluable feedback to cultivation strategies for isolating targeted and/or novel microorganisms. Here, we aimed to determine the efficiency of cultivating representative microorganisms from a non-human, mammalian microbiome, identify those microorganisms, and determine the bioactivity of isolates. Molecular methods indicated that around 57% of the ASVs detected in the original inoculum were cultivated in our experiments, but nearly 53% of the total ASVs that were present in our cultivation experiments were not detected in the original inoculum. In light of our controls, our data suggests that when molecular tools were used to characterize our cultivation efforts, they provided a more complete, albeit more complex, understanding of which organisms were present compared to what was eventually cultivated. Lastly, about 3% of the isolates collected from our cultivation experiments showed inhibitory bioactivity against a multidrug-resistant pathogen panel, further highlighting the importance of informing and directing future cultivation efforts with molecular tools.ImportanceCultivation is the definitive tool to understand a microorganism’s physiology, metabolism, and ecological role(s). Despite continuous efforts to hone this skill, researchers are still observing yet-to-be cultivated organisms through high-throughput sequencing studies. Here, we use the very same tool that highlights biodiversity to assess cultivation efficiency. When applied to drug discovery, where screening a vast number of isolates for bioactive metabolites is common, cultivating redundant organisms is a hindrance. However, we observed that cultivating in combination with molecular tools can expand the observed diversity of an environment and its community, potentially increasing the number of microorganisms to be screened for natural products.


2011 ◽  
Vol 56 (27) ◽  
pp. 2916-2921 ◽  
Author(s):  
AiYou Huang ◽  
GuangCe Wang ◽  
LinWen He ◽  
JianFeng Niu ◽  
BaoYu Zhang

Sign in / Sign up

Export Citation Format

Share Document