scholarly journals Carbon Disulfide (CS2) Mechanisms in Formation of Atmospheric Carbon Dioxide (CO2) Formation from Unconventional Shale Gas Extraction and Processing Operations and Global Climate Change

2015 ◽  
Vol 9s1 ◽  
pp. EHI.S15667 ◽  
Author(s):  
Alisa L. Rich ◽  
Jay T. Patel
Atmosphere ◽  
2019 ◽  
Vol 10 (7) ◽  
pp. 377 ◽  
Author(s):  
Xiao-cong Zhu ◽  
Dong-rui Di ◽  
Ming-guo Ma ◽  
Wei-yu Shi

Greenhouse gases emitted from soil play a crucial role in the atmospheric environment and global climate change. The theory and technique of detecting stable isotopes in the atmosphere has been widely used to an investigate greenhouse gases from soil. In this paper, we review the current literature on greenhouse gases emitted from soil, including carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O). We attempt to synthesize recent advances in the theory and application of stable isotopes in greenhouse gases from soil and discuss future research needs and directions.


2016 ◽  
pp. 81-84
Author(s):  
András Tamás

In the atmosphere, the amount of carbon dioxide and other greenhouse gases are rising in gradually increasing pace since the Industrial Revolution. The rising concentration of atmospheric carbon dioxide (CO2) contributes to global warming, and the changes affect to both the precipitation and the evaporation quantity. Moreover, the concentration of carbon dioxide directly affects the productivity and physiology of plants. The effect of temperature changes on plants is still controversial, although studies have been widely conducted. The C4-type plants react better in this respect than the C3-type plants. However, the C3-type plants respond more richer for the increase of atmospheric carbon dioxide and climate change.


2016 ◽  
Author(s):  
C. Frankenberg ◽  
S. S. Kulawik ◽  
S. Wofsy ◽  
F. Chevallier ◽  
B. Daube ◽  
...  

Abstract. In recent years, space-borne observations of atmospheric carbon-dioxide (CO2) have become increasingly used in global carbon-cycle studies. In order to obtain added value from space-borne measurements, they have to suffice stringent accuracy and precision requirements, with the latter being less crucial as it can be reduced by just enhanced sample size. Validation of CO2 column averaged dry air mole fractions (XCO2) heavily relies on measurements of the Total Carbon Column Observing Network TCCON. Owing to the sparseness of the network and the requirements imposed on space-based measurements, independent additional validation is highly valuable. Here, we use observations from the HIAPER Pole-to-Pole Observations (HIPPO) flights from January 2009 through September 2011 to validate CO2 measurements from satellites (GOSAT, TES, AIRS) and atmospheric inversion models (CarbonTracker CT2013B, MACC v13r1). We find that the atmospheric models capture the XCO2 variability observed in HIPPO flights very well, with correlation coefficients (r2) of 0.93 and 0.95 for CT2013B and MACC, respectively. Some larger discrepancies can be observed in profile comparisons at higher latitudes, esp. at 300 hPa during the peaks of either carbon uptake or release. These deviations can be up to 4 ppm and hint at misrepresentation of vertical transport. Comparisons with the GOSAT satellite are of comparable quality, with an r2 of 0.85, a mean bias μ of −0.06 ppm and a standard deviation σ of 0.45 ppm. TES exhibits an r2 of 0.75, μ of 0.34 ppm and σ of 1.13 ppm. For AIRS, we find an r2 of 0.37, μ of 1.11 ppm and σ of 1.46 ppm, with latitude-dependent biases. For these comparisons at least 6, 20 and 50 atmospheric soundings have been averaged for GOSAT, TES and AIRS, respectively. Overall, we find that GOSAT soundings over the remote pacific ocean mostly meet the stringent accuracy requirements of about 0.5 ppm for space-based CO2 observations.


2019 ◽  
Vol 3 (3) ◽  
Author(s):  
Sri Walyoto

This article analyzes the loss of carbon dioxide (CO2) released in the forest conversion to oil palm plantations. This research data gathered from the relevant secondary data and relate published reports. This research finds that a loss of release of carbon dioxide (CO2) per hectare of US $ 9,800 with a carbon price of USD2 of US $ 14,000 carbon price of USD3 and US $ 19,600 in carbon price of USD4. In addition, this conversion also has a significant impact on global warming (GWP) and global climate change. Keywords: oil palm plantation, CO2 release, GWP, climate change. 


2019 ◽  
Vol 48 (4) ◽  
pp. 935-944 ◽  
Author(s):  
Yu Chen ◽  
Laurent Serteyn ◽  
Zhenying Wang ◽  
KangLai He ◽  
Frederic Francis

Abstract In the current context of global climate change, atmospheric carbon dioxide (CO2) concentrations are continuously rising with potential influence on plant–herbivore interactions. The effect of elevated CO2 (eCO2) on feeding behavior of corn leaf aphid, Rhopalosiphum maidis (Fitch) on barley seedlings Hordeum vulgare L. was tracked using electrical penetration graph (EPG). The nutrient content of host plant and the developmental indexes of aphids under eCO2 and ambient CO2 (aCO2) conditions were also investigated. Barley seedlings under eCO2 concentration had lower contents of crude protein and amino acids. EPG analysis showed the plants cultivated under eCO2 influenced the aphid feeding behavior, by prolonging the total pre-probation time of the aphids (wandering and locating the feeding site) and the ingestion of passive phloem sap. Moreover, fresh body weight, fecundity and intrinsic population growth rate of R. maidis was significantly decreased in eCO2 in contrast to aCO2 condition. Our findings suggested that changes in plant nutrition caused by eCO2, mediated via the herbivore host could affect insect feeding behavior and population dynamics.


2014 ◽  
Vol 7 (8) ◽  
pp. 8101-8123
Author(s):  
B. Xiang ◽  
D. D. Nelson ◽  
J. B. McManus ◽  
M. S. Zahniser ◽  
R. Wehr ◽  
...  

Abstract. We present field test results for a new spectroscopic instrument to measure atmospheric carbon dioxide (CO2) with high precision (0.02 ppm at 1 Hz) and demonstrate high stability (within 0.1 ppm over more than 8 months), without the need for hourly, daily, or even monthly calibration against high-pressure gas cylinders. The technical novelty of this instrument (ABsolute Carbon dioxide, ABC) is the spectral null method using an internal quartz reference cell with known CO2 column density. Compared to a previously described prototype, the field instrument has better stability and benefits from more precise thermal control of the optics and more accurate pressure measurements in the sample cell (at the mTorr level). The instrument has been deployed at a long-term ecological research site (the Harvard Forest, USA), where it has measured for eight months without on-site calibration and with minimal maintenance, showing drift bounds of less than 0.1 ppm. Field measurements agree well with those of another commercially available cavity ring-down CO2 instrument (Picarro G2301) run with a standard calibration protocol. This field test demonstrates that ABC is capable of performing high-accuracy, unattended, continuous field measurements with minimal use of calibration cylinders.


Sign in / Sign up

Export Citation Format

Share Document