scholarly journals The effect of rising concentration of atmospheric carbone dioxide on crop production

2016 ◽  
pp. 81-84
Author(s):  
András Tamás

In the atmosphere, the amount of carbon dioxide and other greenhouse gases are rising in gradually increasing pace since the Industrial Revolution. The rising concentration of atmospheric carbon dioxide (CO2) contributes to global warming, and the changes affect to both the precipitation and the evaporation quantity. Moreover, the concentration of carbon dioxide directly affects the productivity and physiology of plants. The effect of temperature changes on plants is still controversial, although studies have been widely conducted. The C4-type plants react better in this respect than the C3-type plants. However, the C3-type plants respond more richer for the increase of atmospheric carbon dioxide and climate change.

2020 ◽  
Vol 5 (3) ◽  
pp. p91
Author(s):  
Burl Henry

Multiple instances of reductions in atmospheric Carbon Dioxide (CO2) and Sulfur Dioxide (SO2) levels were examined, and it was found that the only climatic effect was from reduced levels of anthropogenic SO2 aerosol pollution in the atmosphere. There were no instances of the hypothesized cooling from reduced CO2 levels.


2016 ◽  
Author(s):  
C. Frankenberg ◽  
S. S. Kulawik ◽  
S. Wofsy ◽  
F. Chevallier ◽  
B. Daube ◽  
...  

Abstract. In recent years, space-borne observations of atmospheric carbon-dioxide (CO2) have become increasingly used in global carbon-cycle studies. In order to obtain added value from space-borne measurements, they have to suffice stringent accuracy and precision requirements, with the latter being less crucial as it can be reduced by just enhanced sample size. Validation of CO2 column averaged dry air mole fractions (XCO2) heavily relies on measurements of the Total Carbon Column Observing Network TCCON. Owing to the sparseness of the network and the requirements imposed on space-based measurements, independent additional validation is highly valuable. Here, we use observations from the HIAPER Pole-to-Pole Observations (HIPPO) flights from January 2009 through September 2011 to validate CO2 measurements from satellites (GOSAT, TES, AIRS) and atmospheric inversion models (CarbonTracker CT2013B, MACC v13r1). We find that the atmospheric models capture the XCO2 variability observed in HIPPO flights very well, with correlation coefficients (r2) of 0.93 and 0.95 for CT2013B and MACC, respectively. Some larger discrepancies can be observed in profile comparisons at higher latitudes, esp. at 300 hPa during the peaks of either carbon uptake or release. These deviations can be up to 4 ppm and hint at misrepresentation of vertical transport. Comparisons with the GOSAT satellite are of comparable quality, with an r2 of 0.85, a mean bias μ of −0.06 ppm and a standard deviation σ of 0.45 ppm. TES exhibits an r2 of 0.75, μ of 0.34 ppm and σ of 1.13 ppm. For AIRS, we find an r2 of 0.37, μ of 1.11 ppm and σ of 1.46 ppm, with latitude-dependent biases. For these comparisons at least 6, 20 and 50 atmospheric soundings have been averaged for GOSAT, TES and AIRS, respectively. Overall, we find that GOSAT soundings over the remote pacific ocean mostly meet the stringent accuracy requirements of about 0.5 ppm for space-based CO2 observations.


2014 ◽  
Vol 7 (8) ◽  
pp. 8101-8123
Author(s):  
B. Xiang ◽  
D. D. Nelson ◽  
J. B. McManus ◽  
M. S. Zahniser ◽  
R. Wehr ◽  
...  

Abstract. We present field test results for a new spectroscopic instrument to measure atmospheric carbon dioxide (CO2) with high precision (0.02 ppm at 1 Hz) and demonstrate high stability (within 0.1 ppm over more than 8 months), without the need for hourly, daily, or even monthly calibration against high-pressure gas cylinders. The technical novelty of this instrument (ABsolute Carbon dioxide, ABC) is the spectral null method using an internal quartz reference cell with known CO2 column density. Compared to a previously described prototype, the field instrument has better stability and benefits from more precise thermal control of the optics and more accurate pressure measurements in the sample cell (at the mTorr level). The instrument has been deployed at a long-term ecological research site (the Harvard Forest, USA), where it has measured for eight months without on-site calibration and with minimal maintenance, showing drift bounds of less than 0.1 ppm. Field measurements agree well with those of another commercially available cavity ring-down CO2 instrument (Picarro G2301) run with a standard calibration protocol. This field test demonstrates that ABC is capable of performing high-accuracy, unattended, continuous field measurements with minimal use of calibration cylinders.


2010 ◽  
Vol 365 (1549) ◽  
pp. 2107-2116 ◽  
Author(s):  
Mark T. Bulling ◽  
Natalie Hicks ◽  
Leigh Murray ◽  
David M. Paterson ◽  
Dave Raffaelli ◽  
...  

Anthropogenic activity is currently leading to dramatic transformations of ecosystems and losses of biodiversity. The recognition that these ecosystems provide services that are essential for human well-being has led to a major interest in the forms of the biodiversity–ecosystem functioning relationship. However, there is a lack of studies examining the impact of climate change on these relationships and it remains unclear how multiple climatic drivers may affect levels of ecosystem functioning. Here, we examine the roles of two important climate change variables, temperature and concentration of atmospheric carbon dioxide, on the relationship between invertebrate species richness and nutrient release in a model benthic estuarine system. We found a positive relationship between invertebrate species richness and the levels of release of NH 4 -N into the water column, but no effect of species richness on the release of PO 4 -P. Higher temperatures and greater concentrations of atmospheric carbon dioxide had a negative impact on nutrient release. Importantly, we found significant interactions between the climate variables, indicating that reliably predicting the effects of future climate change will not be straightforward as multiple drivers are unlikely to have purely additive effects, resulting in increased levels of uncertainty.


2016 ◽  
Vol 9 (9) ◽  
pp. 4737-4757 ◽  
Author(s):  
Christoph Zellweger ◽  
Lukas Emmenegger ◽  
Mohd Firdaus ◽  
Juha Hatakka ◽  
Martin Heimann ◽  
...  

Abstract. Until recently, atmospheric carbon dioxide (CO2) and methane (CH4) measurements were made almost exclusively using nondispersive infrared (NDIR) absorption and gas chromatography with flame ionisation detection (GC/FID) techniques, respectively. Recently, commercially available instruments based on spectroscopic techniques such as cavity ring-down spectroscopy (CRDS), off-axis integrated cavity output spectroscopy (OA-ICOS) and Fourier transform infrared (FTIR) spectroscopy have become more widely available and affordable. This resulted in a widespread use of these techniques at many measurement stations. This paper is focused on the comparison between a CRDS "travelling instrument" that has been used during performance audits within the Global Atmosphere Watch (GAW) programme of the World Meteorological Organization (WMO) with instruments incorporating other, more traditional techniques for measuring CO2 and CH4 (NDIR and GC/FID). We demonstrate that CRDS instruments and likely other spectroscopic techniques are suitable for WMO/GAW stations and allow a smooth continuation of historic CO2 and CH4 time series. Moreover, the analysis of the audit results indicates that the spectroscopic techniques have a number of advantages over the traditional methods which will lead to the improved accuracy of atmospheric CO2 and CH4 measurements.


Sign in / Sign up

Export Citation Format

Share Document