scholarly journals Species and Cell Types Difference in Tryptophan Metabolism

2013 ◽  
Vol 6s1 ◽  
pp. IJTR.S11558 ◽  
Author(s):  
Yuki Murakami ◽  
Kuniaki Saito

L-Tryptophan (L-TRP) is a nutritionally essential amino acid and the kynurenine (KYN) pathway is the major route of L-TRP catabolism. Besides being synthesized for proteins, L-TRP and its metabolites have critical roles for the functions of nervous and immune systems. Many researches show that optimal amounts of L-TRP in diets depend on species, developmental stages, environmental factors and health status. We have shown that KYN pathway-related enzyme activities vary among species, tissue and cell types in physiological conditions. Furthermore, the response of these enzyme activities to systemic and/or central nervous system immune activation and inflammation depends on species and cell types. Thus, it is very important to choose appropriate animal species and cell types in which to evaluate the physiologic and pathologic effects of increased KYN pathway metabolism. We believe that understanding L-TRP metabolism among species and cell types provides a better idea for analysis of human pathological condition.

2009 ◽  
Vol 38 (4) ◽  
pp. 409-414 ◽  
Author(s):  
Mi-Ra Lee ◽  
Bai-Shen Sun ◽  
Li-Juan Gu ◽  
Chun-Yan Wang ◽  
Zhe-Ming Fang ◽  
...  

Viruses ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 91
Author(s):  
Verena Schultz ◽  
Stephanie L. Cumberworth ◽  
Quan Gu ◽  
Natasha Johnson ◽  
Claire L. Donald ◽  
...  

Understanding how Zika virus (Flaviviridae; ZIKV) affects neural cells is paramount in comprehending pathologies associated with infection. Whilst the effects of ZIKV in neural development are well documented, impact on the adult nervous system remains obscure. Here, we investigated the effects of ZIKV infection in established mature myelinated central nervous system (CNS) cultures. Infection incurred damage to myelinated fibers, with ZIKV-positive cells appearing when myelin damage was first detected as well as axonal pathology, suggesting the latter was a consequence of oligodendroglia infection. Transcriptome analysis revealed host factors that were upregulated during ZIKV infection. One such factor, CCL5, was validated in vitro as inhibiting myelination. Transferred UV-inactivated media from infected cultures did not damage myelin and axons, suggesting that viral replication is necessary to induce the observed effects. These data show that ZIKV infection affects CNS cells even after myelination—which is critical for saltatory conduction and neuronal function—has taken place. Understanding the targets of this virus across developmental stages including the mature CNS, and the subsequent effects of infection of cell types, is necessary to understand effective time frames for therapeutic intervention.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Vikram Agarwal ◽  
Sereno Lopez-Darwin ◽  
David R. Kelley ◽  
Jay Shendure

Abstract3′ untranslated regions (3′ UTRs) post-transcriptionally regulate mRNA stability, localization, and translation rate. While 3′-UTR isoforms have been globally quantified in limited cell types using bulk measurements, their differential usage among cell types during mammalian development remains poorly characterized. In this study, we examine a dataset comprising ~2 million nuclei spanning E9.5–E13.5 of mouse embryonic development to quantify transcriptome-wide changes in alternative polyadenylation (APA). We observe a global lengthening of 3′ UTRs across embryonic stages in all cell types, although we detect shorter 3′ UTRs in hematopoietic lineages and longer 3′ UTRs in neuronal cell types within each stage. An analysis of RNA-binding protein (RBP) dynamics identifies ELAV-like family members, which are concomitantly induced in neuronal lineages and developmental stages experiencing 3′-UTR lengthening, as putative regulators of APA. By measuring 3′-UTR isoforms in an expansive single cell dataset, our work provides a transcriptome-wide and organism-wide map of the dynamic landscape of alternative polyadenylation during mammalian organogenesis.


Author(s):  
Millissia Ben Maamar ◽  
Eric E Nilsson ◽  
Michael K Skinner

Abstract One of the most important developing cell types in any biological system is the gamete (sperm and egg). The transmission of phenotypes and optimally adapted physiology to subsequent generations is in large part controlled by gametogenesis. In contrast to genetics, the environment actively regulates epigenetics to impact the physiology and phenotype of cellular and biological systems. The integration of epigenetics and genetics is critical for all developmental biology systems at the cellular and organism level. The current review is focused on the role of epigenetics during gametogenesis for both the spermatogenesis system in the male and oogenesis system in the female. The developmental stages from the initial primordial germ cell through gametogenesis to the mature sperm and egg are presented. How environmental factors can influence the epigenetics of gametogenesis to impact the epigenetic transgenerational inheritance of phenotypic and physiological change in subsequent generations is reviewed.


2008 ◽  
Vol 48 (2) ◽  
pp. 294-303 ◽  
Author(s):  
Maria Skoglund ◽  
David M. Peterson ◽  
Roger Andersson ◽  
Janicka Nilsson ◽  
Lena H. Dimberg

Aquaculture ◽  
2013 ◽  
Vol 396-399 ◽  
pp. 82-88 ◽  
Author(s):  
Shan-Liang Xu ◽  
Dan-Li Wang ◽  
Chao-Yan Jia ◽  
Shan Jin ◽  
Chun-Lin Wang ◽  
...  

1998 ◽  
Vol 530 ◽  
Author(s):  
T. Schiimstel ◽  
H. Schirra ◽  
J. Gerwann ◽  
C. Lesniak ◽  
A. Kalaghi-Nafchi ◽  
...  

AbstractCommercially available and synthesized silica particles were fluorescently labeled with FITC and modified to get a wide variety of particle systems with defined size and surface charge. By a variation of reaction conditions particles with diameters of 10 and 80 nm determined with TEM and with zetapotentials between -50 to +30 mV under physiological conditions (pH: 7.4, PBS-buffer) were available.A further molecular shell consisiting of avidin was obtained by binding the molecules to negatively charged particle surfaces through electrostatic interactions. The amount of avidin coupled to the silica particles was 1.7 μg per mg particle. Starting with particles with an hydrodynamic diameter determined with PCS of 260 nm, the size increased to 500 nm, while the zeta potential was altered to -8 mV under physiological conditions.Biotinylated wheat germ agglutinin (bio-WGA) can be bonded to such particles through avidin / biotin complex formation. Up to 2.8 μg lectin per mg particles could be coupled to the particle surface. This leads to a further increase of hydrodynamic diameter to 650 nm. It could be shown by hemagglutination test, that the bonded lectin is still active. No toxic effects of the silica particles were found at 1 wt.-% particle concentration with various cell types (Caco-2, L132). The binding of lectin-particle complexes to cells was increased by a factor of 4.4 in comparison to uncoated particles.In addition it was found that WGA can directly be coupled to the particle surface. An amount of 1.8 μg Lectin per mg particle was determined. The hydrodynamic diameter increases from 260 nm to 432 rm, while a zetapotential of-28 mV was found under physiological conditions.It could be shown, that negatively charged silica nanoparticles are suitable systems to couple various biomolecules retaining their biological function.


Crop Science ◽  
2018 ◽  
Vol 58 (6) ◽  
pp. 2613-2622 ◽  
Author(s):  
Yuhong Gao ◽  
Hanyu Jiang ◽  
Bing Wu ◽  
Junyi Niu ◽  
Yajiao Li ◽  
...  

1999 ◽  
Vol 68 (2) ◽  
pp. 255-262 ◽  
Author(s):  
MITSUSHI ABE ◽  
MASANORI T. ITOH ◽  
MIKIO MIYATA ◽  
SATOSHI ISHIKAWA ◽  
YAWARA SUMI

2021 ◽  
Author(s):  
Lulu Qiao ◽  
Chi Lan ◽  
Luca Capriotti ◽  
Audrey Ah-Fong ◽  
Jonatan Nino Sanchez ◽  
...  

AbstractRecent discoveries show that fungi can take up environmental RNA, which can then silence fungal genes through environmental RNA interference. This discovery prompted the development of Spray-Induced Gene Silencing (SIGS) for plant disease management. In this study, we aimed to determine the efficacy of SIGS across a variety of eukaryotic microbes. We first examined the efficiency of RNA uptake in multiple pathogenic and non-pathogenic fungi, and an oomycete pathogen. We observed efficient double-stranded RNA (dsRNA) uptake in the fungal plant pathogens Botrytis cinerea, Sclerotinia sclerotiorum, Rhizoctonia solani, Aspergillus niger, and Verticillium dahliae, but no uptake in Colletotrichum gloeosporioides, and weak uptake in a beneficial fungus, Trichoderma virens. For the oomycete plant pathogen, Phytophthora infestans, RNA uptake was limited, and varied across different cell types and developmental stages. Topical application of dsRNA targeting virulence-related genes in the pathogens with high RNA uptake efficiency significantly inhibited plant disease symptoms, whereas the application of dsRNA in pathogens with low RNA uptake efficiency did not suppress infection. Our results have revealed that dsRNA uptake efficiencies vary across eukaryotic microbe species and cell types. The success of SIGS for plant disease management can largely be determined by the pathogen RNA uptake efficiency.


Sign in / Sign up

Export Citation Format

Share Document