scholarly journals Development of A Flexible Cell Targeting System Based on Silica Nanoparticles

1998 ◽  
Vol 530 ◽  
Author(s):  
T. Schiimstel ◽  
H. Schirra ◽  
J. Gerwann ◽  
C. Lesniak ◽  
A. Kalaghi-Nafchi ◽  
...  

AbstractCommercially available and synthesized silica particles were fluorescently labeled with FITC and modified to get a wide variety of particle systems with defined size and surface charge. By a variation of reaction conditions particles with diameters of 10 and 80 nm determined with TEM and with zetapotentials between -50 to +30 mV under physiological conditions (pH: 7.4, PBS-buffer) were available.A further molecular shell consisiting of avidin was obtained by binding the molecules to negatively charged particle surfaces through electrostatic interactions. The amount of avidin coupled to the silica particles was 1.7 μg per mg particle. Starting with particles with an hydrodynamic diameter determined with PCS of 260 nm, the size increased to 500 nm, while the zeta potential was altered to -8 mV under physiological conditions.Biotinylated wheat germ agglutinin (bio-WGA) can be bonded to such particles through avidin / biotin complex formation. Up to 2.8 μg lectin per mg particles could be coupled to the particle surface. This leads to a further increase of hydrodynamic diameter to 650 nm. It could be shown by hemagglutination test, that the bonded lectin is still active. No toxic effects of the silica particles were found at 1 wt.-% particle concentration with various cell types (Caco-2, L132). The binding of lectin-particle complexes to cells was increased by a factor of 4.4 in comparison to uncoated particles.In addition it was found that WGA can directly be coupled to the particle surface. An amount of 1.8 μg Lectin per mg particle was determined. The hydrodynamic diameter increases from 260 nm to 432 rm, while a zetapotential of-28 mV was found under physiological conditions.It could be shown, that negatively charged silica nanoparticles are suitable systems to couple various biomolecules retaining their biological function.

2021 ◽  
Vol 11 ◽  
Author(s):  
Florian Gruber ◽  
Martina Marchetti-Deschmann ◽  
Christopher Kremslehner ◽  
Markus Schosserer

Lipids are highly diverse biomolecules crucial for the formation and function of cellular membranes, for metabolism, and for cellular signaling. In the mammalian skin, lipids additionally serve for the formation of the epidermal barrier and as surface lipids, together regulating permeability, physical properties, acidification and the antimicrobial defense. Recent advances in accuracy and specificity of mass spectrometry have allowed studying enzymatic and non-enzymatic modifications of lipids—the epilipidome—multiplying the known diversity of molecules in this class. As the skin is an organ that is frequently exposed to oxidative-, chemical- and thermal stress, and to injury and inflammation, it is an ideal organ to study epilipidome dynamics, their causes, and their biological consequences. Recent studies uncover loss or gain in biological function resulting from either specific modifications or the sum of the modifications of lipids. These studies suggest an important role for the epilipidome in stress responses and immune regulation in the skin. In this minireview we provide a short survey of the recent developments on causes and consequences of epilipidomic changes in the skin or in cell types that reside in the skin.


Nanoscale ◽  
2016 ◽  
Vol 8 (5) ◽  
pp. 3019-3030 ◽  
Author(s):  
Diego Estupiñán ◽  
Markus B. Bannwarth ◽  
Steven E. Mylon ◽  
Katharina Landfester ◽  
Rafael Muñoz-Espí ◽  
...  

Multiple functionalization of magnetic silica particles allows simultaneously their bio-orthogonal modification and less unspecific protein adsorption to occur.


2019 ◽  
Vol 20 (7) ◽  
pp. 1728 ◽  
Author(s):  
Seongju Lee ◽  
Sakulrat Mankhong ◽  
Ju-Hee Kang

Alzheimer’s disease (AD) is a chronic progressive neurodegenerative disease characterized by memory decline and cognitive dysfunction. Although the primary causes of AD are not clear, it is widely accepted that the accumulation of amyloid beta (Aβ) and consecutive hyper-phosphorylation of tau, synaptic loss, oxidative stress and neuronal death might play a vital role in AD pathogenesis. Recently, it has been widely suggested that extracellular vesicles (EVs), which are released from virtually all cell types, are a mediator in regulating AD pathogenesis. Clinical evidence for the diagnostic performance of EV-associated biomarkers, particularly exosome biomarkers in the blood, is also emerging. In this review, we briefly introduce the biological function of EVs in the central nervous system and discuss the roles of EVs in AD pathogenesis. In particular, the roles of EVs associated with autophagy and lysosomal degradation systems in AD proteinopathy and in disease propagation are discussed. Next, we summarize candidates for biochemical AD biomarkers in EVs, including proteins and miRNAs. The accumulating data brings hope that the application of EVs will be helpful for early diagnostics and the identification of new therapeutic targets for AD. However, at the same time, there are several challenges in developing valid EV biomarkers. We highlight considerations for the development of AD biomarkers from circulating EVs, which includes the standardization of pre-analytical sources of variability, yield and purity of isolated EVs and quantification of EV biomarkers. The development of valid EV AD biomarkers may be facilitated by collaboration between investigators and the industry.


Polymers ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 319 ◽  
Author(s):  
Kentaro Yoshida ◽  
Yu Kashimura ◽  
Toshio Kamijo ◽  
Tetsuya Ono ◽  
Takenori Dairaku ◽  
...  

Glucose-sensitive films were prepared through the layer-by-layer (LbL) deposition of hemin-modified poly(ethyleneimine) (H-PEI) solution and DNA solution (containing glucose oxidase (GOx)). H-PEI/DNA + GOx multilayer films were constructed using electrostatic interactions. The (H-PEI/DNA + GOx)5 film was then partially decomposed by hydrogen peroxide (H2O2). The mechanism for the decomposition of the LbL film was considered to involve more reactive oxygen species (ROS) that were formed by the reaction of hemin and H2O2, which then caused nonspecific DNA cleavage. In addition, GOx present in the LbL films reacts with glucose to generate hydrogen peroxide. Therefore, decomposition of the (H-PEI/DNA + GOx)5 film was observed when the thin film was immersed in a glucose solution. (H-PEI/DNA + GOx)5 films exposed to a glucose solution for periods of 24, 48 72, and 96 h indicated that the decomposition of the film increased with the time to 9.97%, 16.3%, 23.1%, and 30.5%, respectively. The rate of LbL film decomposition increased with the glucose concentration. At pH and ionic strengths close to physiological conditions, it was possible to slowly decompose the LbL film at low glucose concentrations of 1–10 mM.


2020 ◽  
Vol 7 ◽  
Author(s):  
Sreedevi Padmanabhan ◽  
Ravi Manjithaya

Unconventional protein secretion (UCPS) of leaderless proteins bypasses the conventional endoplasmic reticulum (ER)-Golgi route. The proportion of UCPS in the secretome varies tremendously across eukaryotes. Interestingly, macroautophagy, an intracellular recycling process that is generally involved in cargo degradation, also participates in UCPS. This emerging field of secretory mode of autophagy is underexplored and has several unanswered questions regarding the composition of players, cargo, and the mechanisms that drive it. As secretomes vary considerably across cell types and physiological conditions, the contribution of secretory autophagy in healthy and pathophysiological states remain to be elucidated. Recent studies have begun to shed light on this enigmatic process.


2020 ◽  
Vol 8 (19) ◽  
pp. 4267-4277 ◽  
Author(s):  
Kostiantyn Kulyk ◽  
Liana Azizova ◽  
James M. Cunningham ◽  
Lyuba Mikhalovska ◽  
Mykola Borysenko ◽  
...  

The findings of this study suggest that copper(ii) oxide–silica nanoparticles produce NO from the GSNO species at physiological conditions in situ and could be used for designing biomedical materials with NO generating activity.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 505 ◽  
Author(s):  
Lisa Haddick ◽  
Wei Zhang ◽  
Sören Reinhard ◽  
Karin Möller ◽  
Hanna Engelke ◽  
...  

Multifunctional core-shell mesoporous silica nanoparticles (MSN) were tailored in size ranging from 60 to 160 nm as delivery agents for antitumoral microRNA (miRNA). The positively charged particle core with a pore diameter of about 5 nm and a stellate pore morphology allowed for an internal, protective adsorption of the fragile miRNA cargo. A negatively charged particle surface enabled the association of a deliberately designed block copolymer with the MSN shell by charge-matching, simultaneously acting as a capping as well as endosomal release agent. Furthermore, the copolymer was functionalized with the peptide ligand GE11 targeting the epidermal growth factor receptor, EGFR. These multifunctional nanoparticles showed an enhanced uptake into EGFR-overexpressing T24 bladder cancer cells through receptor-mediated cellular internalization. A luciferase gene knock-down of up to 65% and additional antitumoral effects such as a decreased cell migration as well as changes in cell cycle were observed. We demonstrate that nanoparticles with a diameter of 160 nm show the fastest cellular internalization after a very short incubation time of 45 min and produce the highest level of gene knock-down.


2007 ◽  
Vol 553 ◽  
pp. 245-251
Author(s):  
Ali Shokuhfar ◽  
Tolou Shokuhfar ◽  
M. Ghazinejad ◽  
R. Babazade ◽  
S. Tabatabae

Monodispersed nanometer-sized particles proved to be very important and advantageous in many industrial applications. One of the notable groups of these particles is silica (SiO2) nanoparticles which are widely utilized in developing numerous products such as electrical and thermal insulators, humidity sensors, varnish, etc. Since the quality of some of these products depends highly on the purity and size distribution of the silica particles, it is necessary to produce silica nanoparticles of narrow size distribution and very high purity. In this research silica nanoparticles, with a relatively narrow size distribution, have been synthesized via the hydrolysis reaction of tetraethoxisilane (TEOS) in the solution of deionized water and ethanol (C2H5OH), and in the presence of ammonia (NH3) as a catalyst. The nature, morphology and the size of the silica particles has been studied using Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM) and X-ray diffraction. Results indicate that the morphology, structure and the diameter of silica particles depend strongly on the molar ratios of the reactants.


2015 ◽  
Vol 44 (46) ◽  
pp. 20186-20192 ◽  
Author(s):  
Haoquan Zheng ◽  
Cheuk-Wai Tai ◽  
Jie Su ◽  
Xiaodong Zou ◽  
Feifei Gao

A pH-responsive drug delivery system via mesoporous silica nanoparticles as carriers can be achieved based on electrostatic interactions between drug molecules and carriers, when the isoelectric point of the drug molecule is high.


Sign in / Sign up

Export Citation Format

Share Document