scholarly journals A Simple Model to Study Tau Pathology

2016 ◽  
Vol 10 ◽  
pp. JEN.S25100 ◽  
Author(s):  
Alexander L. Houck ◽  
Félix Hernández ◽  
Jesús Ávila

Tau proteins play a role in the stabilization of microtubules, but in pathological conditions, tauopathies, tau is modified by phosphorylation and can aggregate into aberrant aggregates. These aggregates could be toxic to cells, and different cell models have been used to test for compounds that might prevent these tau modifications. Here, we have used a cell model involving the overexpression of human tau in human embryonic kidney 293 cells. In human embryonic kidney 293 cells expressing tau in a stable manner, we have been able to replicate the phosphorylation of intracellular tau. This intracellular tau increases its own level of phosphorylation and aggregates, likely due to the regulatory effect of some growth factors on specific tau kinases such as GSK3. In these conditions, a change in secreted tau was observed. Reversal of phosphorylation and aggregation of tau was found by the use of lithium, a GSK3 inhibitor. Thus, we propose this as a simple cell model to study tau pathology in nonneuronal cells due to their viability and ease to work with.

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Si-Si Liu ◽  
Yi-Shi Liu ◽  
Xin-Yu Guo ◽  
Yoshiko Murakami ◽  
Ganglong Yang ◽  
...  

AbstractOver 100 kinds of proteins are expressed as glycosylphosphatidylinositol (GPI)-anchored proteins (GPI-APs) on the cell surface in mammalian cells. GPI-APs possess unique properties in terms of their intracellular trafficking and association with lipid rafts. Although it is clear that GPI-APs play critical roles in various biological phenomena, it is poorly understood how the GPI moiety contributes to these mechanisms. More than 30 genes are involved in the correct biosynthesis of GPI-APs. We here constructed a cell library in which 32 genes involved in GPI biosynthesis were knocked out in human embryonic kidney 293 cells. Using the cell library, the surface expression and sensitivity to phosphatidylinositol-specific phospholipase C of GPI-APs were analyzed. Furthermore, we identified structural motifs of GPIs that are recognized by a GPI-binding toxin, aerolysin. The cell-based GPI-knockout library could be applied not only to basic researches, but also to applications and methodologies related to GPI-APs.


2017 ◽  
Vol 13 (7S_Part_27) ◽  
pp. P1297-P1297
Author(s):  
Emma Mead ◽  
Elena Ficulle ◽  
Charlotte Dunbar ◽  
Sarah Eversden ◽  
Michael J. O'Neill ◽  
...  

2018 ◽  
Vol 19 (10) ◽  
pp. 2978 ◽  
Author(s):  
Seulgi Shin ◽  
Sungsu Lim ◽  
Hyeanjeong Jeong ◽  
Li Kwan ◽  
Yun Kim

Tau is a neuron-specific microtubule-binding protein that stabilizes microtubules. It is generally thought that highly phosphorylated tau dissociates from microtubules and becomes insoluble aggregates, leading to neuronal degeneration. Due to the implication of tau aggregation in neurodegenerative disorders, including Alzheimer’s disease, great efforts have been made to identify the tau aggregation process. However, tau interaction with tubulin during the aggregation process remains largely unknown. To scrutinize the tau-tubulin interaction, we generated a cell model that enables visualization of the tau-tubulin interaction in a living cell using the Bifluorescence Complementation (BiFC) Technique. Upon diverse chemical stimulation that induced tau pathology, tau-tubulin BiFC cells showed significantly increased levels of BiFC fluorescence, indicating that tau aggregates together with tubulin. Our results suggest that tubulin should be considered as a key component in the tau aggregation process.


2021 ◽  
Vol 2021 ◽  
pp. 1-25
Author(s):  
Xiaomei Fu ◽  
Jianfang Zhang ◽  
Xuanjie Huang ◽  
Zhifeng Mo ◽  
Ziyang Sang ◽  
...  

It has been considered that glucose fluctuation (GF) plays a role in renal injury and is related to diabetic nephropathy (DN) development. But the mechanism is still unclear. Aerobic glycolysis has become a topical issue in DN in recent years. There is an internal connection between GF, aerobic glycolysis, and DN. Curcumin (Cur) is a principal curcuminoid of turmeric and possesses specific protective properties in kidney functions. Cur also participates in the regulation of aerobic glycolysis switch. In this study, we first measured the levels of aerobic glycolysis and evaluated Cur’s inhibitory ability in a cell model of HEK-293 under the condition of oscillating high glucose. The results indicated that GF exacerbated inflammation injury, oxidative stress, and apoptosis in HEK-293 cell, while Cur alleviated this cytotoxicity induced by GF. We found that GF increased aerobic glycolysis in HEK-293 cells and Cur presented a dose-dependent weakening effect to this exacerbation. Next, we built a panel of 17 miRNAs and 8 lncRNAs that were previously reported to mediate the Warburg effect. Our RT-qPCR results indicated that GF reduced the miR-489 content in the HEK-293 cell model and Cur could prevent this downregulation. Then, we planned to explore the character of miR-489 in Cur-triggered attenuation of the Warburg effect under GF condition. Our findings presented that Cur prevented GF-triggered aerobic glycolysis by upregulating miR-489 in HEK-293 cells. Next, we choose the miR-489/LDHA axis for further investigation. We confirmed that Cur prevented GF-triggered aerobic glycolysis via the miR-489/LDHA axis in HEK-293 cells. In conclusion, this study presented that Cur prevented GF-triggered renal injury by restraining aerobic glycolysis via the miR-489/LDHA axis in the HEK-293 cell model.


Author(s):  
Kevin de Vries ◽  
Anna Nikishova ◽  
Benjamin Czaja ◽  
Gábor Závodszky ◽  
Alfons G. Hoekstra

2012 ◽  
Vol 51 (05) ◽  
pp. 179-185 ◽  
Author(s):  
M. Wendisch ◽  
D. Aurich ◽  
R. Runge ◽  
R. Freudenberg ◽  
J. Kotzerke ◽  
...  

SummaryTechnetium radiopharmaceuticals are well established in nuclear medicine. Besides its well-known gamma radiation, 99mTc emits an average of five Auger and internal conversion electrons per decay. The biological toxicity of these low-energy, high-LET (linear energy transfer) emissions is a controversial subject. One aim of this study was to estimate in a cell model how much 99mTc can be present in exposed cells and which radiobiological effects could be estimated in 99mTc-overloaded cells. Methods: Sodium iodine symporter (NIS)- positive thyroid cells were used. 99mTc-uptake studies were performed after preincubation with a non-radioactive (cold) stannous pyro - phosphate kit solution or as a standard 99mTc pyrophosphate kit preparation or with pure pertechnetate solution. Survival curves were analyzed from colony-forming assays. Results: Preincubation with stannous complexes causes irreversible intracellular radioactivity retention of 99mTc and is followed by further pertechnetate influx to an unexpectedly high 99mTc level. The uptake of 99mTc pertechnetate in NIS-positive cells can be modified using stannous pyrophosphate from 3–5% to >80%. The maximum possible cellular uptake of 99mTc was 90 Bq/cell. Compared with nearly pure extracellular irradiation from routine 99mTc complexes, cell survival was reduced by 3–4 orders of magnitude after preincubation with stannous pyrophosphate. Conclusions: Intra cellular 99mTc retention is related to reduced survival, which is most likely mediated by the emission of low-energy electrons. Our findings show that the described experiments constitute a simple and useful in vitro model for radiobiological investigations in a cell model.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Xu Gao ◽  
Jingya Dai ◽  
Guifang Li ◽  
Xinya Dai

Abstract Objective In this work, we investigated the effects of gambogic acid (GA) on lipopolysaccharide (LPS)-induced apoptosis and inflammation in a cell model of neonatal pneumonia. Method Human WI-38 cells were maintained in vitro and incubated with various concentrations of GA to examine WI-38 survival. GA-preincubated WI-38 cells were then treated with LPS to investigate the protective effects of GA on LPS-induced death, apoptosis and inflammation. Western blot assay was utilized to analyze the effect of GA on tropomyosin receptor kinase A (TrkA) signaling pathway in LPS-treated WI-38 cells. In addition, human AKT serine/threonine kinase 1 (Akt) gene was knocked down in WI-38 cells to further investigate the associated genetic mechanisms of GA in protecting LPS-induced inflammation and apoptosis. Results Pre-incubating WI-38 cells with low and medium concentrations GA protected LPS-induced cell death, apoptosis and inflammatory protein productions of IL-6 and MCP-1. Using western blot assay, it was demonstrated that GA promoted TrkA phosphorylation and Akt activation in LPS-treated WI-38 cells. Knocking down Akt gene in WI-38 cells showed that GA-associated protections against LPS-induced apoptosis and inflammation were significantly reduced. Conclusions GA protected LPS-induced apoptosis and inflammation, possibly through the activations of TrkA and Akt signaling pathway. This work may broaden our understanding on the molecular mechanisms of human neonatal pneumonia.


Sign in / Sign up

Export Citation Format

Share Document