scholarly journals Antimicrobial Peptides and Their Analogs: Searching for New Potential Therapeutics

2014 ◽  
Vol 6 ◽  
pp. PMC.S13215 ◽  
Author(s):  
Krystyna Midura-Nowaczek ◽  
Agnieszka Markowska

Antimicrobial peptides (AMPs) are an essential part of innate immunity. These compounds have been considered as potential therapeutics because of their broad-spectrum activities and proven ability to avoid antimicrobial resistance, but their clinical and commercial developments have some limitations, such as susceptibility to proteases and a high cost of peptide production. To overcome these problems, many researchers have tried to develop short active peptides, their modifications and mimics with better properties while retaining their basic features of natural AMPs such as cationic charge and the amphipathic structure.

Author(s):  
Bishun Deo Prasad ◽  
Sangita Sahni ◽  
Tushar Ranjan ◽  
Diksha Kumari

Antimicrobial peptides (AMPs) are the small ubiquitous self-defence products which are extensively distributed in plants. They can be classified into several groups, including thionins, defensins, snakins, lipid transfer proteins, glycine-rich proteins, cyclotides,  and hevein-type proteins. AMPs are important mediators of an innate host defence system, with antimicrobial activities against a broad spectrum of microorganisms. AMPs can be extracted and isolated from different plants and plant organs such as stems, roots, seeds, flowers and leaves. They perform various physiological defensive mechanisms to eliminate viruses, bacteria, fungi and parasites, and so could be used as therapeutic and preservative agents.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 101
Author(s):  
Annarita Falanga ◽  
Valentina Del Genio ◽  
Stefania Galdiero

The alarming growth of antimicrobial resistance and recent viral pandemic events have enhanced the need for novel approaches through innovative agents that are mainly able to attach to the external layers of bacteria and viruses, causing permanent damage. Antimicrobial molecules are potent broad-spectrum agents with a high potential as novel therapeutics. In this context, antimicrobial peptides, cell penetrating peptides, and antiviral peptides play a major role, and have been suggested as promising solutions. Furthermore, dendrimers are to be considered as suitable macromolecules for the development of advanced nanosystems that are able to complement the typical properties of dendrimers with those of peptides. This review focuses on the description of nanoplatforms constructed with peptides and dendrimers, and their applications.


Antibiotics ◽  
2019 ◽  
Vol 8 (2) ◽  
pp. 44 ◽  
Author(s):  
Kuppusamy ◽  
Willcox ◽  
Black ◽  
Kumar

The rapid growth of antimicrobial resistance against several frontline antibiotics has encouraged scientists worldwide to develop new alternatives with unique mechanisms of action. Antimicrobial peptides (AMPs) have attracted considerable interest due to their rapid killing and broad-spectrum activity. Peptidomimetics overcome some of the obstacles of AMPs such as high cost of synthesis, short half-life in vivo due to their susceptibility to proteolytic degradation, and issues with toxicity. This review will examine the development of short cationic peptidomimetics as antimicrobials.


2020 ◽  
Vol 20 (14) ◽  
pp. 1310-1323
Author(s):  
Andrea Bosso ◽  
Antimo Di Maro ◽  
Valeria Cafaro ◽  
Alberto Di Donato ◽  
Eugenio Notomista ◽  
...  

Host defence peptides (HDPs) are powerful modulators of cellular responses to various types of insults caused by pathogen agents. To date, a wide range of HDPs, from species of different kingdoms including bacteria, plant and animal with extreme diversity in structure and biological activity, have been described. Apart from a limited number of peptides ribosomally synthesized, a large number of promising and multifunctional HDPs have been identified within protein precursors, with properties not necessarily related to innate immunity, consolidating the fascinating hypothesis that proteins have a second or even multiple biological mission in the form of one or more bio-active peptides. Among these precursors, enzymes constitute certainly an interesting group, because most of them are mainly globular and characterized by a fine specific internal structure closely related to their catalytic properties and also because they are yet little considered as potential HDP releasing proteins. In this regard, the main aim of the present review is to describe a panel of HDPs, identified in all canonical classes of enzymes, and to provide a detailed description on hydrolases and their corresponding HDPs, as there seems to exist a striking link between these structurally sophisticated catalysts and their high content in cationic and amphipathic cryptic peptides.


Molecules ◽  
2021 ◽  
Vol 26 (7) ◽  
pp. 1870
Author(s):  
Harinash Rao ◽  
Sulin Choo ◽  
Sri Raja Rajeswari Mahalingam ◽  
Diajeng Sekar Adisuri ◽  
Priya Madhavan ◽  
...  

Biofilms play an essential role in chronic and healthcare-associated infections and are more resistant to antimicrobials compared to their planktonic counterparts due to their (1) physiological state, (2) cell density, (3) quorum sensing abilities, (4) presence of extracellular matrix, (5) upregulation of drug efflux pumps, (6) point mutation and overexpression of resistance genes, and (7) presence of persister cells. The genes involved and their implications in antimicrobial resistance are well defined for bacterial biofilms but are understudied in fungal biofilms. Potential therapeutics for biofilm mitigation that have been reported include (1) antimicrobial photodynamic therapy, (2) antimicrobial lock therapy, (3) antimicrobial peptides, (4) electrical methods, and (5) antimicrobial coatings. These approaches exhibit promising characteristics for addressing the impending crisis of antimicrobial resistance (AMR). Recently, advances in the micro- and nanotechnology field have propelled the development of novel biomaterials and approaches to combat biofilms either independently, in combination or as antimicrobial delivery systems. In this review, we will summarize the general principles of clinically important microbial biofilm formation with a focus on fungal biofilms. We will delve into the details of some novel micro- and nanotechnology approaches that have been developed to combat biofilms and the possibility of utilizing them in a clinical setting.


Author(s):  
L. Ruffier d’Epenoux ◽  
A. Guillouzouic ◽  
P. Bémer ◽  
M‐A Dagnelie ◽  
A. Khammari ◽  
...  

1999 ◽  
Vol 277 (2) ◽  
pp. G257-G261 ◽  
Author(s):  
Andre J. Ouellette

The hypothesis that epithelial cells release preformed antibiotic peptides as components of mucosal innate immunity has gained experimental support in recent years. In the mammalian small intestine, Paneth cells secrete granules that are rich in α-defensins and additional antimicrobial peptides into the lumen of the crypt. The α-defensins are homologues of peptides that function as mediators of nonoxidative microbial cell killing in phagocytic leukocytes, and they are potent microbicidal agents in in vitro assays. Because certain mouse α-defensins stimulate cultured epithelial cells to secrete chloride ion, those peptides appear to be capable of interacting directly with the apical membranes of neighboring cells and perhaps influencing crypt physiology. In instances of crypt disruption or induced Paneth cell deficiency, crypt intermediate cells appear to compensate by accumulating and secreting Paneth cell antimicrobial peptides. Challenges for the future will be to understand the mechanisms of this epithelial plasticity and to show that Paneth cells contribute directly to innate immunity in the crypt microenvironment.


Aquaculture ◽  
2000 ◽  
Vol 191 (1-3) ◽  
pp. 71-88 ◽  
Author(s):  
Evelyne Bachère ◽  
Delphine Destoumieux ◽  
Philippe Bulet

Sign in / Sign up

Export Citation Format

Share Document