Response of adzuki bean to pre-emergence herbicides

2006 ◽  
Vol 86 (2) ◽  
pp. 601-604 ◽  
Author(s):  
P. H. Sikkema ◽  
N. Soltani ◽  
C. Shropshire ◽  
D. E. Robinson

Limited herbicide options are available to adzuki bean growers in southwestern Ontario. Six field trials were conducted in Ontario during 2003 and 2004 to evaluate the tolerance of adzuki bean to dimethenamid (1250 and 2500 g a.i. ha-1), S-metolachlor (1600 and 3200 g a.i. ha-1), clomazone (1000 and 2000 g a.i. ha-1), and imazethapyr (75 and 150 g a.i. ha-1) applied pre-emergence. Dimethenamid caused up to 37% visual injury and reduced plant height, shoot dry weight and yield 27, 59 and 52%, respectively. Seed maturity was also delayed by dimethenamid at 2500 g ha-1. S-metolachlor caused up to 34% visual inj ury and reduced plant height, shoot dry weight and yield 27, 48 and 48%, respectively. Clomazone caused 53% visual injury and reduced plant height, shoot dry weight and yield 47, 84 and 78%, respectively. Imazethapyr caused up to 6% visual injury; however, this injury was transient with no adverse effect on plant height, shoot dry weight, seed moisture content and yield of adzuki bean. Based on these results, dimethenamid, S-metolachlor and clomazone applied pre-emergence (PRE) do not have an adequate margin of crop safety for use in adzuki bean at the doses evaluated. However, imazethapyr applied PRE has an adequate margin of crop safety for weed management in adzuki bean production in Ontario at the doses evaluated. Key words: Clomazone, dimethenamid, imazethapyr, S-metolachlor, tolerance

2006 ◽  
Vol 20 (4) ◽  
pp. 862-866 ◽  
Author(s):  
Peter H. Sikkema ◽  
Darren E. Robinson ◽  
Christy Shropshire ◽  
Nader Soltani

Weed management is a major production issue facing otebo bean growers in Ontario. Field trials were conducted at six Ontario locations during a 2-yr period (2003 and 2004) to evaluate the tolerance of otebo bean to the preplant incorporated (PPI) application of EPTC at 4,400 and 8,800 g ai/ha, trifluralin at 1,155 and 2,310 g ai/ha, dimethenamid at 1,250 and 2,500 g ai/ha,S-metolachlor at 1,600 and 3,200 g ai/ha, and imazethapyr at 75 and 150 g ai/ha. EPTC, trifluralin, dimethenamid, andS-metolachlor applied PPI resulted in minimal (less than 5%) visual injury and with exception of the low rate of dimethenamid causing a 16% reduction in shoot dry weight and the high rate causing an 8% plant height reduction had no adverse effect on plant height, shoot dry weight, seed moisture content, and yield. Imazethapyr applied PPI caused up to 7% visual injury and reduced plant height, shoot dry weight, and yield 8, 18, and 12% at 75 g/ha and 19, 38, and 27% at 150 g/ ha, respectively. Seed moisture content was also reduced by 0.4% with both rates. Based on these results, otebo bean is not tolerant of imazethapyr applied PPI at rates as low as 75 g/ha, the proposed use rate. EPTC, trifluralin, dimethenamid, andS-metolachlor applied PPI have a 2× rate crop safety margin for use in otebo bean weed management.


2015 ◽  
Vol 95 (5) ◽  
pp. 959-963 ◽  
Author(s):  
Nader Soltani ◽  
Robert E. Nurse ◽  
Christy Shropshire ◽  
Peter H. Sikkema

Soltani, N., Nurse, R. E., Shropshire, C. and Sikkema, P. H. 2015. Tolerance of adzuki bean to pre-emergence herbicides. Can. J. Plant Sci. 95: 959–963. Limited pre-emergence herbicide options are available for weed management in adzuki bean in Ontario. Eight field trials were conducted in Ontario over a 3-yr period (2012, 2013, 2014) to evaluate the tolerance of adzuki bean to pyroxasulfone (150 and 300 g a.i. ha−1), flumioxazin (71 and 142 g a.i. ha−1), sulfentrazone (420 and 840 g a.i. ha−1), fomesafen (240 and 480 g a.i. ha−1), imazethapyr (75 and 150 g a.i. ha−1), and cloransulam-methyl (35 and 70 g a.i. ha−1) applied pre-emergence. Pyroxasulfone, flumioxazin and sulfentrazone applied pre-emergence at the proposed 1× and 2× rates caused 25–96% injury and reduced plant stand up to 78%, shoot dry weight up to 95%, plant height up to 67% and seed yield up to 76% in adzuki bean. Cloransulam-methyl resulted in 1 to 9% injury with no adverse effect on plant stand, shoot dry weight, plant height, seed moisture content and seed yield of adzuki bean. Fomesafen and imazethapyr resulted in 1–3% injury with no adverse effect on plant stand, shoot dry weight, plant height, seed moisture content and seed yield of adzuki bean. Based on these results, pyroxasulfone, flumioxazin and sulfentrazone do not have an adequate margin of crop safety for weed management in adzuki bean. Cloransulam-methyl has potential for use in adzuki bean, especially at the lower rate. Imazethapyr and fomesafen at the rates evaluated can be used safely in adzuki bean production under Ontario environmental conditions.


2007 ◽  
Vol 21 (1) ◽  
pp. 230-234 ◽  
Author(s):  
Peter H. Sikkema ◽  
Christy Shropshire ◽  
Nader Soltani

Three field trials were conducted over a 2-yr period (2004 and 2005) at Exeter and Ridgetown, Ontario to evaluate the tolerance of eight market classes of dry beans to KIH-485 applied PRE at 210 and 420 g ai/ha. KIH-485 PRE caused as much as 67% visual injury in small-seeded and 44% visual injury in large-seeded dry beans. KIH-485 applied PRE at 420 g/ha reduced plant height up to 47% at Ridgetown and 8% at Exeter in 2004, and reduced height of brown and white bean by 15 and 19%, respectively, but had no effect on the height of the other beans in 2005. Shoot dry weight was not affected at Exeter in 2004 but was reduced by 46% at Ridgetown in 2004 and 14% at Exeter in 2005. In 2004, seed moisture content increased by 5, 6, and 12% in black, otebo, and pinto beans, respectively. Seed yield was reduced up to 27% at Ridgetown and 11% at Exeter in 2004 but was not affected at Exeter in 2005. On the basis of this research, KIH-485 PRE causes unacceptable injury in some dry bean market classes.


2004 ◽  
Vol 18 (4) ◽  
pp. 893-901 ◽  
Author(s):  
Peter H. Sikkema ◽  
Nader Soltani ◽  
Christy Shropshire ◽  
Todd Cowan

Weed control in white beans is currently limited by the small number of registered herbicides. The tolerance of two white bean cultivars, ‘AC Compass’ and ‘OAC Thunder’, to various postemergence (POST) herbicides at the maximum use rate and twice the maximum use rate for soybean or corn was evaluated at two Ontario locations in 2001 and 2002. Generally, the two cultivars did not differ in their response to the POST herbicides. POST applications of imazamox plus fomesafen, imazamox plus bentazon, and cloransulam-methyl decreased plant height, shoot dry weight, and yield by as much as 29, 41, and 55%, respectively, and increased seed moisture content up to 3.9%. POST applications of thifensulfuron, chlorimuron, and bromoxynil decreased plant height as much as 57%, shoot dry weight by up to 71%, yield as much as 93% and increased seed moisture content up to 15.5%. Based on these results, AC Compass and OAC Thunder white beans do not possess sufficient tolerance to support the registration of imazamox plus bentazon, imazamox plus fomesafen, cloransulam-methyl, thifensulfuron, chlorimuron, and bromoxynil.


2012 ◽  
Vol 92 (4) ◽  
pp. 723-728 ◽  
Author(s):  
Nader Soltani ◽  
Christy Shropshire ◽  
Peter H. Sikkema

Soltani, N., Shropshire, C. and Sikkema, P. H. 2012. Response of dry beans to halosulfuron applied postemergence. Can. J. Plant Sci. 92: 723–728. Four field trials were conducted over a 2-yr period (2009 and 2010) at Exeter and Ridgetown, Ontario, to evaluate the tolerance of adzuki, black, cranberry, kidney, otebo, pinto, Small Red Mexican and white beans to halosulfuron applied postemergence (POST) at 35 and 70 g a.i. ha−1. All treatments including the non-treated control were maintained weed free during the growing season. Halosulfuron applied POST caused as much as 73, 7, 13, 12, 12, 11, 11 and 9% injury in adzuki, black, cranberry, kidney, otebo, pinto, Small Red Mexican (SRM) and white beans, respectively. Halosulfuron applied POST reduced adzuki bean height as much as 52 and 70% at Exeter and Ridgetown, respectively. Plant height was not affected in the other market classes of dry bean evaluated. Halosulfuron POST reduced shoot dry weight of adzuki bean 68% at both rates evaluated. Otebo and SRM bean shoot dry weight were not affected when halosulfuron was applied POST at 35 g a.i. ha−1 but otebo bean shoot dry weight was reduced 12% and SRM bean shoot dry weight was reduced 14% at 70 g a.i. ha−1. Shoot dry weight of black, cranberry, kidney, pinto and white bean was not affected with either rate of halosulfuron. Seed yield of adzuki bean was decreased 58% at 35 g a.i. ha−1 and 68% at 70 g a.i. ha−1 with halosulfuron. White bean yield was not affected with halosulfuron applied POST at 35 g a.i. ha−1 but was reduced 9% at 70 g a.i. ha−1. Seed yield of black, cranberry, kidney, otebo, pinto and SRM bean was not reduced with either rate of halosulfuron. Based on these results, there is not an adequate margin of crop safety for halosulfuron POST in adzuki bean. However, there is potential for POST application of halosulfuron in black, cranberry, kidney, otebo, pinto, SRM and white beans.


1995 ◽  
Vol 22 (1) ◽  
pp. 22-26 ◽  
Author(s):  
J. F. Spears ◽  
G. A. Sullivan

Abstract Classification of peanuts (Arachis hypogaea L.) based on pod mesocarp color has become a popular means of estimating maturity of runner peanuts. This study was initiated to determine if the hull mesocarp color is related to seed maturity of virginia-type peanuts and to evaluate changes in quality as seed mature. Cultivars NC 7 and NC 9 peanuts were harvested by hand in 1990, 1991, and 1992. Pods were separated according to mesocarp color. Seed moisture content and dry weight within a maturity class varied with cultivar and production year. Germination of NC 7 seed grown in 1990 and 1992 increased as seed approached maturity. Immature NC 9 seed grown in 1991 and 1992 had substantially lower germination than seed from mature pods. There was no increase in germination during maturation of NC 7 seed harvested in 1991 or NC 9 from 1990. Seed leakage during imbibition, measured by electrical conductivity, decreased as seed matured. The lowest leakage levels occurred when seed had reached physiological maturity. Germination following accelerated aging (AA) increased as seed matured. Maximum AA germination of NC 7 occurred when seed had reached 77, 84, and 100% of their final dry weight in 1990, 1991, and 1992, respectively. NC 9 seed achieved maximum germination following AA after the seed amassed at least 90% of their final dry weight.


2013 ◽  
Vol 93 (1) ◽  
pp. 97-107 ◽  
Author(s):  
A. Rashid ◽  
S. F. Hwang ◽  
H. U. Ahmed ◽  
G. D. Turnbull ◽  
S. E. Strelkov ◽  
...  

Rashid, A., Hwang, S. F., Ahmed, H. U., Turnbull, G. D., Strelkov, S. E. and Gossen, B. D. 2013. Effects of soil-borne Rhizoctonia solani on canola seedlings after application of glyphosate herbicide. Can. J. Plant Sci. 93: 97–107. Application of glyphosate (N-phosphonomethyl glycine) prior to seeding is a common weed management practice in many agricultural systems. However, there are concerns that this practice may increase the impact of soil-borne diseases on the crop, even in cultivars that are resistant to glyphosate. In the current study, the effects of pre-plant applications of glyphosate on seedling blight of canola caused by Rhizoctonia solani and subsequent crop growth were examined under field and greenhouse conditions. Under greenhouse conditions in soil inoculated with R. solani, glyphosate application 15 d before seeding reduced seedling emergence, increased damping-off, and decreased plant height and shoot dry weight of canola relative to a glyphosate-free control. However, the adverse effects were substantially reduced when the crop was seeded 33 d after glyphosate application. This indicates that glyphosate application prior to planting may increase the impact of R. solani on canola seedlings, but that this effect diminishes quite rapidly. Soil populations of R. solani declined over the 33-d period regardless of glyphosate treatment. Glyphosate application 10 d before seeding increased seedling emergence and seed yield (1 of 2 yr) of canola in field trials inoculated with R. solani.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Nader Soltani ◽  
Christy Shropshire ◽  
Peter H. Sikkema

Field studies were conducted in 2010 and 2011 at the Huron Research Station, Exeter, Ontario and from 2009 to 2011 at the University of Guelph Ridgetown Campus, Ridgetown, Ontario to evaluate the sensitivity of four market classes of dry bean to sulfentrazone applied preemergence at 105, 140, and 280 g ai/ha alone and in combination with imazethapyr at 37.5 g ai/ha. At 1 week after emergence (WAE), sulfentrazone alone or in combination with imazethapyr at all doses evaluated caused no significant visible injury in dry bean. At 2 WAE, sulfentrazone alone caused 1–11, 1–11, 1–5, and 3–19% visible injury, and sulfentrazone + imazethapyr caused 3–11, 2–10, 2–5, and 4–20% visible injury in black, cranberry, kidney, and white bean, respectively. At 4 WAE, sulfentrazone alone caused 1–7, 1–7, 0–4, and 1–16% visible injury and sulfentrazone + imazethapyr caused 1–8, 1–5, 1–3, and 2–14% visible injury in black, cranberry, kidney, and white bean, respectively. Sulfentrazone PRE caused slightly greater injury in black and white bean compared to cranberry and kidney bean. Generally, crop injury with sulfentrazone at rates up to 140 g ai/ha alone and in combination with imazethapyr at 37.5 g ai/ha was minimal with no adverse effect on plant height, shoot dry weight, seed moisture content, and yield. Based on these results, there is potential for preemergence application of sulfentrazone at rates up to 140 g ai/ha alone or in combination with imazethapyr at 37.5 g ai/ha in black, cranberry, kidney and white bean.


2009 ◽  
Vol 89 (5) ◽  
pp. 993-997 ◽  
Author(s):  
N. Soltani ◽  
C. Shropshire ◽  
P H Sikkema

Three field trials were conducted over a 2-yr period at Exeter (2007, 2008) and Ridgetown (2007), Ontario to evaluate the tolerance of two market classes and two cultivars of each market class (cranberry, Etna and Hooter; kidney, Red Kanner and Red Hawk) of dry bean to preplant incorporated (PPI) and preemergence (PRE) applications of pyroxasulfone at 209 and 418 g a.i. ha-1. All treatments including the non-treated control were maintained weed free during the growing season. There was greater injury when pyroxasulfone was applied PPI than PRE, and injury was greater with the high rate at 1, 2, and 4 wk after emergence (WAE). Pyroxasulfone at 209 and 418 g a.i. ha-1 caused as much as 32 and 61% visible injury when applied PPI and 15 and 30% visible injury when applied PRE in dry bean, respectively. Pyroxasulfone at 209 and 418 g a.i. ha-1 decreased shoot dry weight as much as 60 and 80% when applied PPI and 30 and 50% when applied PRE in dry bean, respectively. Plant height was not affected by pyroxasulfone application timing, but was rate dependent. Height was reduced 14, 13, 22 and 13% at 209 g a.i. ha-1 and 24, 31, 42 and 27% at 418 g a.i. ha-1 for Etna, Hooter, Red Kanner and Red Hawk cultivars, respectively. Dry bean yield was reduced as much as 29% at 209 g a.i. ha-1 and 45% at 418 g a.i. ha-1. This research shows that there is not an adequate margin of crop safety for pyroxasulfone applied PPI or PRE at the rates evaluated in Etna, Hooter, Red Kanner and Red Hawk dry beans in Ontario.Key words: Cranberry bean, Etna bean, kidney bean, Hooter bean, Phaseolus vulgaris L., Red Hawk bean, Red Kanner bean, pyroxasulfone


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 519d-519 ◽  
Author(s):  
Kenneth R. Schroeder ◽  
Dennis P. Stimart

Nicotiana alata Link and Otto. was transformed via Agrobacterium tumefaciens encoding a senescence-specific promoter SAG12 cloned from Arabidopsis thaliana fused to a Agrobacterium tumefaciens gene encoding isopentenyl transferase (IPT) that catalyzes cytokinin synthesis. This was considered an autoregulatory senescence-inhibitor system. In 1996, we reported delayed senescence of intact flowers by 2 to 6 d and delayed leaf senescence of transgenic vs. wild-type N. alata. Further evaluations in 1997 revealed several other interesting effects of the SAG12-IPT gene construct. Measurement of chlorophyll content of mature leaves showed higher levels of both chlorophyll a and b in transgenic material under normal fertilization and truncated fertilization regimes. At 4 to 5 months of age transgenic plants expressed differences in plant height, branching, and dry weight. Plant height was reduced by 3 to 13 cm; branch counts increased 2 to 3 fold; and shoot dry weight increased up to 11 g over wild-type N. alata. These observations indicate the system is not tightly autoregulated and may prove useful to the floriculture industry for producing compact and more floriferous plants.


Sign in / Sign up

Export Citation Format

Share Document