Tolerance of Processing Tomato to Thifensulfuron-Methyl

2005 ◽  
Vol 19 (3) ◽  
pp. 669-673 ◽  
Author(s):  
Nader Soltani ◽  
Darren E. Robinson ◽  
Allan S. Hamill ◽  
Stephen Bowley ◽  
Peter H. Sikkema

Limited information exists on the tolerance of processing tomato to postemergence (POST) application of thifensulfuron-methyl. The tolerance of 13 processing tomato varieties, ‘CC337’, ‘H9144’, ‘H9314’, ‘H9478’, ‘H9492’, ‘H9553’, ‘H9909’, ‘N1069’, ‘N1082’, ‘N1480E’, ‘N1480L’, ‘N1522’, and ‘PETO696’, to POST applications of thifensulfuron-methyl at the maximum use rate (6 g ai/ha) and twice the maximum use rate (12 g/ha) for soybean was evaluated at two Ontario locations in 2001 and 2002. At 7 days after treatment (DAT), thifensulfuron applied POST caused 0.2 to 1% visible injury to CC337, H9144, N1082, N1522, and PETO696 at the high rate. H9553, H9909, N1069, and N1480E were the most sensitive to POST thifensulfuron-methyl, with visible injury ranging from 1 to 6% at the high rate. There was no visible injury to H9314, H9478, H9492, or N1480L at either application rate of thifensulfuron-methyl. By 28 DAT, no visible injury was noted to any variety, except for H9909, N1069, and N1480L, which showed minimal (<2%) visible injury. There were no adverse effects on shoot dry weight and marketable yield for any variety at either rate. Although thifensulfuron-methyl applied POST caused minimal and transient injury to the varieties tested, more tolerance trials with other fresh and processing tomato varieties are required to confirm these initial results.

2009 ◽  
Vol 89 (5) ◽  
pp. 993-997 ◽  
Author(s):  
N. Soltani ◽  
C. Shropshire ◽  
P H Sikkema

Three field trials were conducted over a 2-yr period at Exeter (2007, 2008) and Ridgetown (2007), Ontario to evaluate the tolerance of two market classes and two cultivars of each market class (cranberry, Etna and Hooter; kidney, Red Kanner and Red Hawk) of dry bean to preplant incorporated (PPI) and preemergence (PRE) applications of pyroxasulfone at 209 and 418 g a.i. ha-1. All treatments including the non-treated control were maintained weed free during the growing season. There was greater injury when pyroxasulfone was applied PPI than PRE, and injury was greater with the high rate at 1, 2, and 4 wk after emergence (WAE). Pyroxasulfone at 209 and 418 g a.i. ha-1 caused as much as 32 and 61% visible injury when applied PPI and 15 and 30% visible injury when applied PRE in dry bean, respectively. Pyroxasulfone at 209 and 418 g a.i. ha-1 decreased shoot dry weight as much as 60 and 80% when applied PPI and 30 and 50% when applied PRE in dry bean, respectively. Plant height was not affected by pyroxasulfone application timing, but was rate dependent. Height was reduced 14, 13, 22 and 13% at 209 g a.i. ha-1 and 24, 31, 42 and 27% at 418 g a.i. ha-1 for Etna, Hooter, Red Kanner and Red Hawk cultivars, respectively. Dry bean yield was reduced as much as 29% at 209 g a.i. ha-1 and 45% at 418 g a.i. ha-1. This research shows that there is not an adequate margin of crop safety for pyroxasulfone applied PPI or PRE at the rates evaluated in Etna, Hooter, Red Kanner and Red Hawk dry beans in Ontario.Key words: Cranberry bean, Etna bean, kidney bean, Hooter bean, Phaseolus vulgaris L., Red Hawk bean, Red Kanner bean, pyroxasulfone


1996 ◽  
Vol 121 (3) ◽  
pp. 414-418 ◽  
Author(s):  
Brian A. Kahn ◽  
Peter J. Stoffella

Seeds of `Rutgers California Supreme' tomato (Lycopersicon esculentum Mill.) were exposed to outer space conditions aboard the long duration exposure facility (LDEF) satellite in the space exposed experiment developed for students (SEEDS) project of the National Aeronautics and Space Administration (NASA). Seeds aboard the LDEF were packed in dacron bags forming four layers per sealed canister. Some of these seeds were used in Oklahoma and Florida for studies of germination, emergence, and fruit yield. Among all measured variables in three experiments, there was only one significant main effect of canister 2 versus canister 7 (for mean time to germination) and only one main effect of layer (for seedling shoot dry weight). There also were only two inconsistent canister x layer interactions in the germination tests. The contrast of Earth-based control seed versus space-exposed seed was significant four times: in Oklahoma in 1991 the mean time to germination of space-exposed seeds and the days to 50% of final germination were 0.7 days less than for Earth-based seeds, and in Florida in 1992 seedling percent emergence and shoot dry weight were increased by space exposure. Fruit yield and marketability were unaffected in plants grown from space-exposed seeds. These results support student findings from the SEEDS project, and provide evidence that tomato seeds can survive in space for several years without adverse effects on germination, emergence, and fruit yield.


2013 ◽  
Vol 27 (3) ◽  
pp. 497-501 ◽  
Author(s):  
Aline M. Crespo ◽  
Andrew W. MacRae ◽  
Cristiane Alves ◽  
Tyler P. Jacoby ◽  
Rick O. Kelly

Fresh market tomato is an important and valuable crop in Florida, accounting for 630 million dollars farm-gate value, which was 45% of the total value of the U.S. crop in 2010. In order to maintain or increase its productivity, labeled herbicide alternatives to methyl bromide are important to limiting seed production of weeds emerging between the raised plasticulture beds. A study was conducted inside a greenhouse where carfentrazone was applied as a drench at 0.03125×, 0.0625×, 0.125×, 0.25×, 0.5×, 1×, 2×, 4×, and 8× and as a subsurface irrigation at 0.0625×, 0.125×, 0.25×, 0.5×, 1×, 2×, 4×, 8×, and 16× rates. The 1× rate equaled the maximum labeled rate of carfentrazone (35.1 g ai ha−1) that would be applied to an area of 0.360 m2. Both the drench and subsurface trials showed an increase in plant injury and reduced growth as the rate of carfentrazone increased. The drench trial, however, was observed to have higher visible injury and greater growth reduction (based on plant measurement) than the subsurface trial, when comparing similar rates. For the 1× rate of carfentrazone in the drench trial vs. the subsurface trial, injury was 66 and 24.5%, respectively. For the 1× rate the tomato plants had estimated growth, based on the curves fit for the data, of 4.8% vs. 39.9% for the drench and subsurface trials, respectively. The subsurface trial better represents what happens in the field when carfentrazone root uptake injury is observed since it is normally observed to be around 10% or less. This still leaves a level of concern; once a 10% injury level in the subsurface trial was estimated to have reduced tomato growth, fruit weight, and total shoot dry weight by 33, 15, and 9.5%, respectively.


HortScience ◽  
2019 ◽  
Vol 54 (6) ◽  
pp. 1067-1076 ◽  
Author(s):  
Ryan C. Costello ◽  
Dan M. Sullivan ◽  
David R. Bryla ◽  
Bernadine C. Strik ◽  
James S. Owen

New markets for organic northern highbush blueberry (Vaccinium corymbosum L.) have stimulated interest in using composts specifically tailored to the plant’s edaphic requirements. Because composts are typically neutral to alkaline in pH (pH 7 to 8), and blueberry requires acidic soil (pH 4.2 to 5.5), we investigated elemental sulfur (S0) addition as a methodology for reducing compost pH. The objectives were to 1) characterize initial compost chemistry, including the pH buffering capacity of compost (acidity required to reduce pH to 5.0), 2) measure changes in compost chemistry accompanying acidification, and 3) evaluate plant growth and mineral nutrition of blueberry in soil amended with an untreated or acidified compost. Ten composts prepared from diverse feedstocks were obtained from municipalities and farms. Addition of finely ground S0 reduced compost pH from 7.2 to 5.3, on average, after 70 d at 22 °C, and increased the solubility of nutrients, including K (from 22 to 36 mmol(+)/L), Ca (from 5 to 19 mmol(+)/L), Mg (from 5 to 20 mmol(+)/L), and Na (from 6 to 9 mmol(+)/L). Sulfate-S, a product of S0 oxidation, also increased from 5 to 45 mmol(−)/L. The composts were incorporated into soil at a high rate (30% v/v) in a greenhouse trial to evaluate their suitability for use in blueberry production. Shoot and root growth were strongly affected by compost chemical characteristics, including pH and electrical conductivity (EC). Potassium in compost was highly variable (2–32 g·kg−1). Concentration of K in the leaves increased positively in response to compost K, whereas shoot dry weight and root growth declined. Leaf Mg also declined in response to compost K, suggesting that elevated K concentrations in compost may cause Mg deficiency. Composts with the highest K were also high in total N, pH, and EC. Compost acidification to pH ≤ 6 improved growth and increased leaf Mg concentration. On the basis of these results, composts derived from animal manures or young plant tissues (e.g., green leaves) appear to be unsuitable for high-rate applications to blueberry because they usually require high amounts of S0 for acidification and are often high in EC and K, whereas those derived from woody materials, such as local yard debris, appear promising based on their C:N ratio, compost acidification requirement, and EC.


2004 ◽  
Vol 14 (4) ◽  
pp. 474-478 ◽  
Author(s):  
Kimberly K. Moore

Growth of `Aladdin Peach Morn' petunia (Petunia × hybrida) and `Accent White' impatiens (Impatiens wallerana) was compared in substrates containing 0%, 30%, 60%, or 100% compost made from biosolids and yard trimmings and fertilized with Nutricote Total 13-13-13 (13N-5.7P-10.8K) Types 70, 100, and 140 incorporated at rates of 0.5x, 1x, 2x, or 3x (x = standard application rate for a medium-feeding crop). Petunia shoot dry weight of plants fertilized with Type 70 incorporated at 0.5x increased as the percentage of compost in the substrate increased from 0% to 60% and then decreased, while shoot dry weight of plants fertilized with Type 70 incorporated at 1x, 2x, or 3x increased as the percentage of compost increased from 0% to 30% and then decreased. Impatiens shoot dry weight of plants fertilized with Type 70 incorporated at 0.5x and 1x also increased as the percentage of compost increased from 0% to 30% and then decreased, while shoot dry weight of plants fertilized at 2x and 3x decreased as the percentage of compost increased from 0% to 100%. Both petunia and impatiens shoot dry weight of plants fertilized with Type 100 and Type 140 incorporated at 0.5x, 1x, 2x, or 3x increased as the percentage of compost increased from 0% to 60% and then decreased.


2006 ◽  
Vol 20 (4) ◽  
pp. 862-866 ◽  
Author(s):  
Peter H. Sikkema ◽  
Darren E. Robinson ◽  
Christy Shropshire ◽  
Nader Soltani

Weed management is a major production issue facing otebo bean growers in Ontario. Field trials were conducted at six Ontario locations during a 2-yr period (2003 and 2004) to evaluate the tolerance of otebo bean to the preplant incorporated (PPI) application of EPTC at 4,400 and 8,800 g ai/ha, trifluralin at 1,155 and 2,310 g ai/ha, dimethenamid at 1,250 and 2,500 g ai/ha,S-metolachlor at 1,600 and 3,200 g ai/ha, and imazethapyr at 75 and 150 g ai/ha. EPTC, trifluralin, dimethenamid, andS-metolachlor applied PPI resulted in minimal (less than 5%) visual injury and with exception of the low rate of dimethenamid causing a 16% reduction in shoot dry weight and the high rate causing an 8% plant height reduction had no adverse effect on plant height, shoot dry weight, seed moisture content, and yield. Imazethapyr applied PPI caused up to 7% visual injury and reduced plant height, shoot dry weight, and yield 8, 18, and 12% at 75 g/ha and 19, 38, and 27% at 150 g/ ha, respectively. Seed moisture content was also reduced by 0.4% with both rates. Based on these results, otebo bean is not tolerant of imazethapyr applied PPI at rates as low as 75 g/ha, the proposed use rate. EPTC, trifluralin, dimethenamid, andS-metolachlor applied PPI have a 2× rate crop safety margin for use in otebo bean weed management.


2009 ◽  
Vol 70 (1) ◽  
pp. 193-201 ◽  
Author(s):  
Katarzyna Adamczewska-Sowińska ◽  
Cecylia Miłowana Uklańska

Effect of Nitrogen Fertilization on Yield and Quality of EndiveThe aim of the experiments carried out in 2007-2008 was to assess the effect of various nitrogen doses on the growth, yield and nutritional value of two endive cultivars Cigal and Excel. The effects of two types of fertilizers were compared: that of ammonium nitrate with that of the product Entec-26. On the basis of the results obtained, it was shown that endive cv. Excel produced a marketable yield that was on average by 35.5% higher than that of the cultivar Cigal. A significantly higher marketable yield of endive was obtained by fertilizing with a single dose of the fertilizer Entec-26, particularly at the rates of 90 and 135 kg N·ha-1, and also 180 kg N·ha-1. The experiments also revealed a significant effect of the fertilization method and nitrogen application rate on the biological value of the endive cultivars under evaluation. The cultivar Excel was characterized by a higher degree of nitrate accumulation, whereas the cultivar Cigal had a higher vitamin C content, dry weight, and chlorophyll content.


Weed Science ◽  
1990 ◽  
Vol 38 (6) ◽  
pp. 459-462 ◽  
Author(s):  
Derrick M. Oosterhuis ◽  
Stan D. Wullschleger ◽  
Ron E. Hampton ◽  
Rosalind A. Ball

Growth chamber experiments were conducted to elucidate the morphological and physiological responses of rice to postemergence application of fenoxaprop. Two rice cultivars, ‘Newbonnet’ and ‘Mars’, and barnyardgrass were treated with 0.17 kg ai ha−1fenoxaprop at the five-leaf stage. Within 2 days of fenoxaprop application, rice cultivars developed a white chlorotic band across leaves that were in direct contact with spray droplets. Leaf elongation rates for the two rice cultivars were inhibited by 40% after 4 days and by over 50% after 14 days. Inhibition of leaf elongation by fenoxaprop contributed to an overall decrease in leaf area and shoot dry weight. Net photosynthesis was reduced by 35% in fenoxaprop-treated plants 11 days after application, although stomatal conductance was not affected. Nitrogen fertilization prior to fenoxaprop application increased foliar injury of both rice cultivars. Visible injury symptoms showed the following order of susceptibility to foliar-applied fenoxaprop: barnyardgrass > Mars rice > Newbonnet rice.


2006 ◽  
Vol 20 (3) ◽  
pp. 558-563 ◽  
Author(s):  
Darren E. Robinson ◽  
Nader Soltani ◽  
Peter H. Sikkema

Three field trials were established from 2001 to 2003 in Ontario to determine the effect of foramsulfuron POST (35 and 70 g ai/ha), isoxaflutole PRE (105 and 210 g ai/ha), and isoxaflutole plus atrazine PRE (105 + 1063 and 210 + 2126 g ai/ha) applied in the previous years to field corn on cranberry, black, kidney, and white (navy) bean. Foramsulfuron residues did not cause visible injury, or reductions in shoot dry weight or yield of dry bean 1 yr after application in corn. In contrast, visual injury across the four market classes varied from 4 to 37% 1 yr after application of isoxaflutole, and from 30 to 54% 1 yr after application of isoxaflutole plus atrazine. Isoxaflutole residues reduced shoot dry weight and yield as much as 81 and 44% in cranberry, 52 and 39% in black, 53 and 19% in kidney, and 42 and 19% in white bean, respectively. Isoxaflutole plus atrazine residues reduced shoot dry weight and yield as much as 87 and 64% in cranberry, 75 and 61% in black, 71 and 46% in kidney, and 65 and 33% in white navy bean, respectively. Injury was not detected regardless of market classes 2 yr after application of isoxaflutole alone or in tank mix with atrazine. Based on these results, it is recommended that none of the market classes of dry bean tested in this study should be grown 1 year after an application of isoxaflutole or isoxaflutole plus atrazine. A recropping interval of 2 years is currently recommended following applications of isoxaflutole or isoxaflutole plus atrazine for these market classes of dry bean.


2003 ◽  
Vol 13 (2) ◽  
pp. 296-302 ◽  
Author(s):  
Marisa M. Wall ◽  
Stephanie Walker ◽  
Arthur D. Wall ◽  
Ed Hughs ◽  
Richard Phillips

In the southwestern U.S. growing region, which includes southern New Mexico, west Texas, and southeastern Arizona, mechanical harvest of chile peppers (Capsicum annuum) is increasing because of the high cost of hand labor. Mechanical harvesters have been developed, but there is limited information on the performance of chile cultivars when machine harvested. Four red chile pepper cultivars (New Mexico 6-4, Sonora, B-18, and B-58) were grown in a farmer's field near Las Cruces, N.M., and harvested in October 2000 using a double-helix-type harvester. Ethephon was applied 3 weeks before harvest at 1.5 pt/acre (1.75 L·ha-1) to promote uniform ripening. Ethephon caused fruit of `B-18' and `B-58' to drop before harvest, thereby affecting yield results. Treatment with ethylene-releasing compounds is not recommended for these cultivars. `Sonora' and `New Mexico 6-4'dropped much less fruit than `B-18' and `B-58' after the ethephon treatment. Dry weight marketable yield ranged from 1419 to 2589 lb/acre (1590.5 to 2901.8 kg·ha-1), and total yield potential (discounting dropped fruit) ranged from about 2500 to 3100 lb/acre (2802.1 to 3474.6 kg·ha-1), depending on cultivar. Harvest efficiencies of 73% to 83% were observed among the cultivars. Trash content of the harvested chile varied from 25% to 42% of dry weight. Trash was predominantly diseased and off-color fruit, leaves, and small stems. Trash content was highest for `Sonora'. `New Mexico 6-4' had the greatest marketable yield and harvest efficiency among the cultivars evaluated in this study.


Sign in / Sign up

Export Citation Format

Share Document