Widening the genetic base of cultivated lentil through hybridization of Lens culinaris ‘Eston’ and L. ervoides accession IG 72815

2013 ◽  
Vol 93 (6) ◽  
pp. 1037-1047 ◽  
Author(s):  
A. Tullu ◽  
K. Bett ◽  
S. Banniza ◽  
S. Vail ◽  
A. Vandenberg

Tullu, A., Bett, K., Banniza, S., Vail, S. and Vandenberg, A. 2013. Widening the genetic base of cultivated lentil through hybridization of Lens culinaris ‘Eston’ and L . ervoides accession IG 72815. Can. J. Plant Sci. 93: 1037–1047. Lentil (Lens culinaris Medik.) is affected by many stresses and the genetic variation for resistance to some of these stresses is limited in the cultivated germplasm. Introgression of genes from diverse sources for the improvement of disease resistance and agronomic performance is urgently needed. An interspecific recombinant inbred line (RIL) population designated LR-26 was developed from a cross of L. culinaris ‘Eston’ and L. ervoides (Brign.) Grande accession IG 72815. RILs were phenotyped (1) to examine the inheritance of resistance to the more aggressive race 0 of Colletotrichum truncatum (Schwein.) Andus & W.D. Moore, causal agent of anthracnose, for which resistance is lacking in the cultivated species and (2) to study the genetic variation in agronomic traits and their relationships to each other. Greenhouse studies were conducted to screen for resistance to race 0 of C. truncatum and evaluate RILs for variations of agronomic characters. Two recessive genes conferred resistance in L. ervoides accession IG 72815. Traits varied significantly and showed transgressive segregations. Seed yield had a significant and positive relationship with biomass, straw yield, seed weight and harvest index. About 20 lines that performed better than Eston in terms of podding ability, lodging, and stand at maturity can be used in a breeding program. LR-26-180 had an 8% greater seed weight than Eston, suggesting that IG 72815 has alleles contributing positively to seed size. Overall, results show that IG 72815 can be used in breeding programs to improve disease resistance and quantitative traits of lentil.

2021 ◽  
Author(s):  
Philipp E Bayer ◽  
Haifei Hu ◽  
Jakob Petereit ◽  
Rajeev K Varshney ◽  
Babu Valliyodan ◽  
...  

The availability of increasing quantities of crop pangenome data permits the detailed association of gene content with agronomic traits. Here, we investigate disease resistance gene content of diverse soybean cultivars and report a significant negative correlation between the number of NLR resistance (R) genes and yield. We find no association between R-genes with seed weight, oil or protein content, and we find no correlation between yield and the number of RLK, RLP genes, or the total number of genes. These results suggest that recent yield improvement in soybean may be partially associated with the selective loss of NLR genes. Three quarters of soybean NLR genes do not show presence/absence variation, limiting the ability to select for their absence, and so the deletion or disabling of select NLR genes may support future yield improvement.


2016 ◽  
Vol 46 (3) ◽  
pp. 259-266 ◽  
Author(s):  
Leiri Daiane Barili ◽  
Naine Martins do Vale ◽  
José Eustáquio de Souza Carneiro ◽  
Fabyano Fonseca e Silva ◽  
Felipe Lopes da Silva

ABSTRACT The increase in grain yield and other agronomic traits, in common bean cultivars, is due, in large part, to its genetic breeding. This study aimed at estimating the genetic progress for grain yield and other important agronomic traits in black common bean cultivars recommended by Brazilian breeding programs between 1960 and 2013. A randomized blocks design was used, with three replications and 40 black common bean cultivars. The following traits were evaluated: grain yield and appearance, plant architecture, number of pods per plant and seeds per pod and 1,000-seed weight. The genetic progress was estimated from the trait averages over the years, using bissegmented linear regression models that allowed the inference of the exact year in which the black common bean breeding began to present significant genetic progress. For grain yield, the genetic progress was observed from 1988, with an annual gain of 2.42 %. Improvements also occurred to grain appearance (1.85 %), plant architecture (1.35 %), number of pods per plant (2.36 %) and seeds per pod (2.24 %) and 1,000-seed weight (1.42 %), mainly after 1989.


2018 ◽  
Vol 40 (1) ◽  
pp. 39324
Author(s):  
Fabiana Mota da Silva ◽  
Elise De Matos Pereira ◽  
Bruno Henrique Pedroso Val ◽  
Dilermando Perecin ◽  
Antonio Orlando Di Mauro ◽  
...  

The success of breeding programs depends on selection procedures and on the breeding methods adopted for selecting segregating populations. The objective of this study was to evaluate the efficiency of the Bulk method with selection in the F3 generation (BulkF3) compared to that of Bulk method as well as determine the most effective selection strategy in terms of genetic gain. Twenty segregating populations were selected by two methods. The 60 best families of each method were selected according to their average agronomic performance. An augmented block design was used. The following agronomic traits were evaluated: insertion height of first pod, plant height at maturity, number of branches and of pods per plant, 100-seed weight, and grain yield. For comparison of the methods, genetic component estimates, genetic gain and predicted breeding values were calculated using mixed models (REML and BLUP). The results showed the families obtained with the BulkF3 method were more productive, showed suitable plant height, a larger number of branches and pods, and higher 100-seed weight. The BulkF3 method was found to be an effective selection strategy for soybean improvement. 


Plants ◽  
2019 ◽  
Vol 8 (8) ◽  
pp. 268 ◽  
Author(s):  
Sion ◽  
Taranto ◽  
Montemurro ◽  
Mangini ◽  
Camposeo ◽  
...  

The olive is a fruit tree species with a century-old history of cultivation in theMediterranean basin. In Apulia (Southern Italy), the olive is of main social, cultural and economicimportance, and represents a hallmark of the rural landscape. However, olive cultivation in thisregion is threatened by the recent spread of the olive quick decline syndrome (OQDS) disease, thusthere is an urgent need to explore biodiversity and search for genetic sources of resistance. Herein,a genetic variation in Apulian olive germplasm was explored, as a first step to identify genotypeswith enhanced bio-agronomic traits, including resistance to OQDS. A preselected set of nuclearmicrosatellite markers allowed the acquisition of genotypic profiles, and to define geneticrelationships between Apulian germplasm and widespread cultivars. The analysis highlighted thebroad genetic variation in Apulian accessions and the presence of different unique genetic profiles.The results of this study lay a foundation for the organization of new breeding programs for olivegenetic improvement.


2020 ◽  
Author(s):  
Andrew R. Raduski ◽  
Adam Herman ◽  
Cloe Pogoda ◽  
Kevin M. Dorn ◽  
David L. Van Tassel ◽  
...  

AbstractPremiseUnderstanding the relationship between genetic structure and geography provides information about a species’ evolutionary history and can be useful to breeders interested in de novo domestication. The North American prairie is especially interesting because of its relatively recent origin and subsequent dramatic fragmentation and degradation. Silphium integrifolium is an iconic perennial American prairie wildflower targeted for domestication as an oilseed crop. Germplasm in the existing breeding program is derived from accessions collected in restricted geographic regions. We present the first application of population genetic data in this species to address the following goals (1) improve breeding programs by characterizing genetic structure and (2) identify the species geographic origin and potential targets and drivers of selection during range expansion.MethodsWe developed a reference transcriptome as a genotyping reference for samples from throughout the species range. Population genetic analyses were used to describe the distribution of genetic variation and demographic modeling was used to characterize potential processes that shaped variation. Outlier scans for selection and associations with environmental variables were used to identify loci linked to putative targets and drivers of selection.Key resultsGenetic variation partitions samples into three geographic clusters. Patterns of variation and demographic modeling suggest that the species origin is in the American southeast. Breeding program accessions are from the region with lowest observed genetic variation.ConclusionsThis iconic prairie species did not originate within the modern prairie. Breeding programs can be improved by including accessions from outside of the germplasm founding region, which has relatively little variation. The geographic structuring coupled with the identified targets and drivers of adaptation can guide collecting efforts towards populations with beneficial agronomic traits.


2019 ◽  
Author(s):  
Jing Bing ◽  
Yunhe Ling ◽  
Peipei An ◽  
Enshi Xiao ◽  
Chunlian Li ◽  
...  

Abstract Background Silverleaf sunflower, Helianthus argophyllus , is one of the most important wild species that have been usually used for the improvement of cultivated sunflower. Although a reference genome is now available for the cultivated species, H. annuus , its effect in helping understanding the mechanisms underlying the traits of H. argophyllus is limited by the substantial genomic variance between these two species.Results In this study, we generated a high-quality reference transcriptome of H. argophyllus using Iso-seq strategy. This assembly contains 50,153 unique genes covering more than 91% of the whole genes. Among them, we find 205 genes that are absent in the cultivated species and 475 fusion genes containing components of coding or non-coding sequences from the genome of H. annuus . It is interesting that in line with the strong disease resistance observed for H. argophyllus , these H. argophyllus -specific genes are predominantly related to functions of resistance. We have also profiled the gene expressions in leaf and root under normal or salt stressed conditions and, as a result, find distinct transcriptomic responses to salt stress in leaf and root. Particularly, genes involved in several critical processes including the synthesis and metabolism of glutamate and carbohydrate transport are reversely regulated in leaf and root.Conclusions Overall, this study provided insights into the genomic mechanisms underlying the disease resistance and salt tolerance of silverleaf sunflower and the transcriptome assembly and the genes identified in this study can serve as a complement data resources for future research and breeding programs of sunflowers.


2021 ◽  
Author(s):  
Reda H. Helmy Sammour ◽  
A-Z. A. Mustafa

Abstract Understanding of the molecular basis of genetic diversity in Lactucaaccessions is substantial for the management, improvementand efficient uses of Lactuca accessions. Therefore, this workaimed to evaluate molecular diversity among twenty-six accessions of Lactuca species usingisozymes and RAPD analyses. The polymorphic percentages were 87.09%and 100% in isozymes and RAPD analyses respectively, indicating a high genetic variation within and among Lactuca species. The number of alleles were higher in the wild species compared to the cultivated species, reflecting a reduction in the richness of alleles in the cultivated species due to domestication that caused a reduction in genetic diversity to meet the demand for high crop productivity.Isozymes and RAPD clustering dendrogrames: (1) separated,L. sativa accessions in more than one cluster confirming their polyphyletic origin; (2)collected the accessions of L. vimineain one cluster revealed its homogeneity; and (3) divided the accessions of L.saligna in two clusters varied in the number of alleles, particularly “A” form. The corresponding analysis associated the accessions of the wild species based on the alleles “B”of the tested isozymes and the cultivated species on alleles “A” and “C”, suggesting that: (1) allele “B” might be the primitive form of these loci that can tolerate the environmental stresses which prevails in the habitats of the wild species, and (2) “A” and “C” could be the derived forms. These results are of great interest for the management of Lactuca germplasm and for future breeding programs of lettuce.


2017 ◽  
Vol 1 (1) ◽  
pp. 13-17
Author(s):  
Ivey Sherrie ◽  
Ouertani Khaled ◽  
Evandrew Washington ◽  
Patricia Lage ◽  
Samantha Woods ◽  
...  

Crop yield is a polygenic complex trait and its improvement is a major goal of breeding programs. The objective of this study was to compare yield and its components along over a period of four years (2007-2010) in three locations in North Carolina using the ‘Essex’ by ‘Forrest’ recombinant inbred line (RIL) population of soybean (ExF, n=94). The RILs distribution for all traits showed higher means than their respective mid-parental values but do not differ significantly at P<0.05. Nearly 45% of the lines germinated later than 6 days which is the mean for the slower germinating parent, Essex. In approximately 63%, the first flower appeared at 52.5 days, which is the mean mid-parental value. As for seed weight, RILs showed better performance than parental lines and 46% of the plants exceeded the higher yielding parent, Forrest. Seed weight showed the highest level of variation ranging from 54.1% for year to 70.7% for genotype. The lowest coefficients of variation (CVs) on average were calculated for flowering time and did not exceed 31.6%. In contrast , the year of the experiment caused the lowest level of variation for the traits studied while the genotype caused the highest level of variation. Seed germination was positively correlated with plant height (r=0.441 at P<0.001) and negatively correlated with both flowering time (r=-0.374 at P<0.001) and seed weight (r=-0.357 at P<0.001) across environments. Flowering time was found negatively correlated with plant height (r=-0.579 at P<0.001) and positively correlated with seed weight. The ExF population performed well in all environments compared to other populations tested in the same environments. The results presented here can be beneficial to NC soybean breeding programs that aim to create superior high yielding and disease free cultivars adapted to several NC environments.


2018 ◽  
Vol 69 (10) ◽  
pp. 999 ◽  
Author(s):  
Madhu Kumari ◽  
Raj Kumar Mittal ◽  
Rakesh Kumar Chahota ◽  
Kalpna Thakur ◽  
Swaran Lata ◽  
...  

The narrow genetic base of lentil (Lens culinaris) has challenged the efforts of breeders to increase its productivity under changing environmental conditions. Inclusion of wild species and diverse cultivated genotypes offers an opportunity to generate new variation through wide hybridisation to broaden the genetic base of cultivated lentil. We evaluated 96 elite, interspecific (L. culinaris × L. orientalis) and intraspecific advanced lentil genotypes along with four checks to determine the extent of genetic variation, resistance to lentil rust (Uromyces viciae-fabae), and the nature and magnitude of their genetic divergence. Sufficient genetic variability was revealed for all of the traits. High heritability and genetic advance were recorded for number of seeds per pod, number of pods per plant, seed yield per plant and biomass per plant. A positive correlation was recorded between grain yield and ten important plant traits. Statistical (D2) and molecular analyses grouped all genotypes into two main clusters and revealed sufficient genetic diversity among advanced lines. Our study showed promising results for creating new variation through wide hybridisation and identified lines L-354 and L-437-1 (rust-resistant) and HPLL-32 (moderately rust-resistant) superior for seed yield and related traits.


Agronomy ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1933
Author(s):  
Sandesh Neupane ◽  
Rajeev Dhakal ◽  
Derek M. Wright ◽  
Deny K. Shrestha ◽  
Bishnu Dhakal ◽  
...  

Although lentil has a long history of cultivation, cultivars rely on a narrow genetic base, indicating room for broadening the diversity. Two field experiments were conducted at Bardiya, Nepal, during winter 2016 and 2017, with 324 diverse lentil genotypes obtained from genebanks and breeding programs around the world. Phenological traits related to adaptation, particularly days to flower, were assessed. A photothermal model was used to predict days to flower in new environments to identify genotypes that may be suitable for additional growing regions in Nepal, allowing for the expansion of the production area. Many putatively adapted genotypes were identified for terai, mid-hill, and high-hill growing regions. The list includes large-seeded or yellow cotyledon lines, representing new market classes of lentils for Nepal.


Sign in / Sign up

Export Citation Format

Share Document