EFFECT OF INSECTICIDES AND HERBICIDES APPLIED TO SOIL ON THE DEVELOPMENT OF PLANT DISEASES: II. EARLY BLIGHT AND FUSARIUM WILT OF TOMATO

1959 ◽  
Vol 39 (1) ◽  
pp. 30-38 ◽  
Author(s):  
Lloyd T. Richardson

The effects of several insecticides and herbicides on the development of early blight and Fusarium wilt of tomato were investigated. Young tomato plants were grown in sand to which solutions or suspensions of these chemicals were applied repeatedly before the foliage was inoculated with spores of Alternaria solani and either before or after the roots were inoculated with spores of Fusarium oxysporum f. lycopersici. On the basis of lesion counts, increased early blight development resulted from applications of lindane, 2,4-D, and isodrin, and decreased disease from endrin, MH, NPA, dieldrin, IPC, dalapon, demeton and aldrin. Lindane, isodrin, and dalapon increased the severity of Fusarium wilt whereas endrin, aldrin, TCA, DDT, and dinoseb reduced it. 2,4-D and MH affected wilt development in a susceptible and a resistant variety in different ways according to the time of application in relation to inoculation, but they did not alter the reaction of an immune variety.

2021 ◽  
Vol 58 (04) ◽  
pp. 1315-1321
Author(s):  
Shafqat Ali

The current research was conducted to investigate the alterations in the mineral status in the leaves of tomato plants against early blight (EB) caused by Alternaria solani. Six tomato varieties; viz. Riograndae, Roma and Basket (resistant) and T-88572, BHN-961 and BHN-1021(susceptible) were inoculated with a blend of five isolates of Alternaria solani, collected from different regions of Faisalabad District. These six varieties for mineral profiling were selected after two years screening from twenty-five varieties of tomatoes under field conditions. These varieties were sown in pots and artificial inoculation was performed to develop disease in inoculated type of tomato plants while distilled water was applied on un-inoculated type of plants. Newly infected leaves from upper, middle and lower parts of tomato plants from resistant and susceptible groups were used to prepare sample for mineral analysis at p ≤ 0.05 and variation in mineral profiling of resistant and susceptible groups of tomato plants was determined through Nested Structured Design. Significant variation was observed in inoculated (3.12, 0.48 %, 1.17, 0.14, 0.42, 0.21, 0.69 and 1.49 ppm and un-inoculated type (8.67, 1.61%, 10.45, 0.22, 1.75, 1.98, 3.09 and 3.39 ppm) while resistant group expressed 6.59, 1.19%, 8.13, 1.973, 1.69, 1.26, 1.36, 2.43 and 2.87ppm and susceptible group exhibited 5.19, 0.91%, 5.69, 1.693, 1.24, 0.91,0.83, 1.35 and 2.22 ppm with respect to NPK, Ca, Mg, Na, Zn, Iron and copper. Resistant variety, Riograndae expressed maximum amount while T-88572 exhibited minimum amount of all mineral contents. Alterations in the mineral profiling in leaves of tomato plants can be used by researchers as biochemical markers for identification and development of resistant source against early blight of tomato and for the development of ecofriendly management strategy towards A. solani.


2020 ◽  
Vol 6 (2) ◽  
pp. 29
Author(s):  
GEMBONG DALMADIYO ◽  
CECE SUHARA ◽  
SUPRIYONO SUPRIYONO ◽  
SUDJINDRO SUDJINDRO

<p><strong>Evaluation on the resistance of kenaf accessions (Hibis¬ cus cannabinus /..) to Fusarium oxysporum Schlect</strong></p><p>Resistant variety is one of the most important components controlling of fusarium wilt disease on kenaf caused by Fusarium oxysporum Schlect. To ind out resistant variety an evaluation on kenaf accessions was conducted in the laboratory and screen house of Phytopathology, RITFC, Malang in June-December 1997. The results of the selection on 77 accessions showed that 41 accessions were highly resistant, 1 2 accessions were resistant, 7 accessions were moderate, 12 accessions were susceptible, and 5 accessions were highly susceptible Three resistant and highly resistant accessions were namely 85-9-73, DS/005 H, and FJ/004 He could inhibit F. oxysporum growth about 23.40- 32.43 mm and its discolorisation about 0.0-13.4%.</p>


2020 ◽  
Author(s):  
Halima Z. Hussein ◽  
Shaker I. Al-Dulaimi

AbstractChemical approaches have been applied to combat Fusarium wilt disease for a long time. Even though pesticides are effective in controlling the disease, they continue to damage the environment. Environmental-friendly approaches to manage plant disease are the goal of many studies recently. This study was conducted to assess the efficacy of some bio-agents in induction of systemic resistance in tomato plants as a management approach of Fusarium wilt disease caused by Fusarium oxysporum f.sp. lycopersici (FOL) under condition Plastic house. Results of the plastic house experiments showed that all treatments in decreased Fusarium disease percentage and severity on tomato, two bacterial combinations (Streptomyces sp. (St) and Pseudomonas fluorescence (Pf)) decreased the infection percentage and disease severity with 16.6% and 8.3%, respectively. Treatment with St reduced the infection percentage and disease severity with 33.3% and 22.8%, while the Pf treatment showed 41.6% and 31.2% reduction in infection percentage and disease severity, compared to 100% and 91.6% in the control treatment. Results of induced systemic resistance (ISR) biochemical indicators showed significant differences in tomato plants. Peroxidase and Phenylalanine-Ammonia-Lyase (PAL) activity and the Phenol content increased significantly 14 days after treatments compared to the control treatment, which contains only the fungal pathogen FOL.


2019 ◽  
Vol 72 (1) ◽  
pp. 69-76 ◽  
Author(s):  
Jesús S. Hernández-Ochoa ◽  
Laura N. Levin ◽  
Carlos E. Hernández-Luna ◽  
Juan Francisco Contreras-Cordero ◽  
Guillermo Niño-Medina ◽  
...  

Plant Disease ◽  
2014 ◽  
Vol 98 (5) ◽  
pp. 694-694 ◽  
Author(s):  
F. García-Bastidas ◽  
N. Ordóñez ◽  
J. Konkol ◽  
M. Al-Qasim ◽  
Z. Naser ◽  
...  

Fusarium wilt or Panama disease of banana, caused by Fusarium oxysporum f. sp. cubense (Foc), is among the most destructive plant diseases (3). Race 1 ravaged ‘Gros Michel’-based export trades until the cultivar was replaced by resistant Cavendish cultivars. However, a new variant of Foc, tropical race 4 (TR4), was identified in Southeast Asia in 1992 and has spread throughout the region (3). Cavendish clones, which are most important in subsistence and export production, are among the wide range of cultivars that are affected, and there is a huge concern that TR4 will further disseminate in Africa since its presence was announced in November 2013 and move into Latin America, thereby threatening other vital banana-growing regions. In Jordan, Cavendish bananas are produced on 1,000 to 1,500 ha in the Jordan Valley (32°N, 35.5°E). In 2006, symptoms of Fusarium wilt were observed and sampled for the isolation of Foc. On half-strength PDA amended with 100-ppm streptomycin sulfate, pale salmon-colored colonies with floccose mycelia developed consistently from surface-disinfested xylem. Single microconidia from these colonies were transferred to half-strength PDA, and conidia and mycelia from these monospore colonies were stored at –80°C in 15% glycerol. On banana leaf agar (Co60-irradiated leaf tissue on water agar), isolates resembled F. oxysporum phenotypically by producing infrequent three- to five-celled macroconidia, copious, usually aseptate microconida on monophialides, and terminal and intercalary chlamydospores after 2 weeks (2). With nitrate-nonutilizing (nit) mutants and testers for different vegetative compatibility groups (VCGs), each of seven examined monospore isolates were placed in VCG 01213, which contains only strains of TR4 (3). Total DNA was extracted from six isolates and PCR analyses, which confirmed their identity as TR4 (1). Subsequently, one of the isolates (JV11) was analyzed for pathogenicity. Inoculum production and inoculation were according to (1) by dipping (30 min) root-wounded 10-week-old plants of the Cavendish cv. Grand Naine in 2 liters of spore suspension (1.0 × 106 spores/ml). Inoculated plants were then placed in sand in 3-liter pots under 28°C, 70% relative humidity, and a 16/8-h light/darkness photoperiod. Sets of three plants were each treated with either JV11 or two TR4 controls (isolate II-5 and a strain isolated from an affected Cavendish plant in Mindanao, Philippines, both of which were diagnosed as TR4 by PCR and pathogenicity analyses). Control sets were either treated with race 1 originating from Cruz das Almas, Bahia, Brazil (1), or water. After 2 weeks, plants inoculated with JV11 and TR4 controls produced typical symptoms of Fusarium wilt. After 4 weeks, tissue was collected from all plants and plated on Komada's medium. TR4 was directly confirmed by PCR (1), either directly from symptomatic plants (JV11 and TR4 controls), or from isolates that were recovered from these plants. Nothing was re-isolated from race 1 inoculated plants and water controls, which remained asymptomatic. This is the first report of TR4 affecting Cavendish outside Southeast Asia, is its northernmost outbreak, and represents a dangerous expansion of this destructive race. Currently, 80% of the Jordan Valley production area is affected by Fusarium wilt, and 20 to 80% of the plants are affected in different farms. References: (1) M. A. Dita et al. Plant Pathol. 59:348, 2010. (2) J. F. Leslie and B. A. Summerell. The Fusarium Lab Manual. Blackwell, Ames, 2006. (3) R. C. Ploetz. Phytopathology 96:653, 2006.


Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 3818
Author(s):  
Hongli Zheng ◽  
Yahan Chen ◽  
Qiuli Guo ◽  
Hong Wei ◽  
Jianying Yue ◽  
...  

Fusarium wilt of potato is one of the most common diseases of potato in China, and is becoming a serious threat in potato production. It has been reported that osthole from Cnidium monnieri (L.) Cusson can inhibit plant pathogens. Here, we test the anti-fungal activity of C. monnieri osthole against Fusarium oxysporum in potatoes. The results showed that at a concentration of 5 mg/mL, osthole was able to obviously inhibit mycelial growth of F. oxysporum. We found that osthole caused changes of mycelial morphology, notably hyphal swelling and darkening. Osthole significantly reduced the spore germination of Fusarium by 57.40%. In addition, osthole also inhibited the growth of other pathogens such as Fusarium moniliforme J. Sheld, Thanatephorus cucumeris Donk, and Alternaria alternata (Fr.) Keissl, but not Alternaria solani Jonesetgrout and Valsa mali Miyabe and G. Yamada. Our results suggest that osthole has considerable potential as an agent for the prevention and treatment of potato Fusarium wilt.


2021 ◽  
Vol 58 (04) ◽  
pp. 1263-1275
Author(s):  
Rashid Iqbal Khan

Plant extracts (PE’s) has emerged as a safer alternative to manage the fungal pathogens affecting tomato productivity. The current study aimed to evaluate the antimicrobial potential of methanolic fenugreek extract against Alternaria solani, a causal agent of early blight disease in tomato. Fenugreek extract was used at different concentrations of 5%, 10%, 15%, 20% and 25% under in vitro conditions. Results concluded that 25% fenugreek extract significantly reduced the radial growth (2.5 cm) of A. solani under in vitro conditions. Based on in vitro results, three concentrations (5%, 15% and 25%) of fenugreek extract was examined under greenhouse and field conditions. The outcomes expressed that 5% fenugreek extract reduced the disease severity up to 30.19% under greenhouse conditions and up to 40.53% under field trials. Although, application of fenugreek extract had exhibited non-significant impact on vegetative and reproductive growth parameters. However, its application had proved better results as compared to those plants which are infected with A. solani but received zero application of fenugreek extract. Furthermore, the effectiveness of plant extracts was evaluated by variant photosynthetic, antioxidative, polyphenolic and hypersensitive response of A. solani affected tomato plants. The 25% fenugreek extract application had augmented the chlorophyll pigments along with the significant increment of superoxide dismutase (174.16 U mg-1 protein), peroxidase (7.61 µmol min-1 g-1 protein) and catalase activity (4.73 nmol min-1 g-1 protein). Similar outcomes were observed regarding phenolic compounds, where 5% fenugreek extract application had enhanced flavonoid levels (26.62 mg QuE g-1), tannins (1.28 mg TE g-1 extract) and total phenolic contents (2.39 mg GAE g-1) in tomato leaves demonstrating its protective effect against early blight. In dose response, 25% fenugreek extract was most effective in reducing lipid peroxidation and enhancing H2O2 levels. The outcomes of study exhibited the fenugreek extract as an effective strategy to be used against A. solani to control early blight infection in tomato plants. Thus, it can serve as suitable fungicide alternative for resource-poor agriculture areas mainly in developing countries.


2021 ◽  
Author(s):  
Heba-Alla S. AbdElatah ◽  
Nashwa M.A. Sallam ◽  
Mohamed S. Mohamed ◽  
Hadeel M. M. Khalil Bagy

Abstract Tomato plants displaying early blight symptoms were collected from different localities in the provinces of Assiut and Sohag, Egypt. The causal pathogens were isolated on potato dextrose agar plates. Pathogenicity tests with 48 isolates were carried out under greenhouse conditions on tomato cultivar (CV 844). All tested isolates caused symptoms of early blight disease with different degrees. The highest disease severity on tomato plants was found after inoculation with isolate No. 6 followed by isolates No. 20 and No. 31. The most pathogenic isolates were identified by sequence analysis using ITS1 and ITS4 primers. The analysis of the amplified sequences from fungal isolates No. 6, 20 and 31 displayed 99 - 100% nucleotide identity with Alternaria solani, Curvularia lunata and A. alternata, respectively. To our knowledge, this is the first report of Curvularia lunata as one of the causal pathogens of early blight disease of tomato plants in Egypt.


2020 ◽  
Vol 3 (2) ◽  
pp. 20-30
Author(s):  
Muhammad Fazil ◽  
Tjut Chamzurni ◽  
Rina Sriwati

Abstrak: Fusarium oxysporum f.sp. lycopersici (Fol) adalah salah satu patogen tular tanah yang sangat berbahaya bagi tanaman tomat, hal itu dikarenakan patogen ini mampu bertahan dalam jangka waktu yang lama di dalam tanah. Salah  satu  alternatif  pengendalian  secara  biologi  yang  ramah  lingkungan  adalah dengan cara memanfaatkan cendawan antagonis sebagai agen biokontrol yaitu Trichoderma spp. penggunaan cendawan antagonis sebagai agen hayati harus dalam bentuk formula yang tepat dengan bahan yang mudah tersedia. Penelitian  ini   bertujuan  untuk  mengetahui  pengaruh  aplikasi  beberapa   bentuk formulasi  Trichoderma  spp  dalam  mengendalikan penyakit  layu  fusarium  pada  tanaman tomat. Penelitian ini menggunakan Rancangan Acak Lengkap pola non faktorial yang terdiri dari 4 perlakuan dengan menggunakan 5 ulangan, setiap ulangan terdiri dari 4 unit tanaman. Susunan perlakuan bentuk formulasi berbahan aktif Trichoderma spp yaitu F0 = Kontrol (tanpa perlakuan),F1 = Formulasi pelet daun katuk 3 g (+ 10 butir)/polibag, F2 = Formulasi padat jagung kering 3 g/polibag dan F3 = Formulasi cair produk komersil 100 ml/polibag. Hasil penelitian menunjukkan bahwa aplikasi beberapa bentuk formulasi  Trichoderma spp  mampu memberikan pengaruh yang nyata terhadap persentase layu tanaman dan tinggi tanaman serta persentase batang yang xylemnya terdiskolorasi. Application of Several Forms by Trichoderma spp Formulation in Controlling Fusarium Wilt Disease on Tomato PlantsAbstract. Fusarium oxysporum f.sp. lycopersici (Fol) is one of the soil pathogens that is very harmful for tomato plants, it is because these pathogens are able to survive for a long time in the soil. One of the alternative biological controls that are environmentally friendly is by utilizing the antagonist fungus as a biocontrol agent that is Trichoderma spp. the use of antagonistic fungi as biological agents should be in the form of the right formula with easily available materials. This study aims to determine the effect of application of some form of Trichoderma spp formulation in controlling fusarium wilt disease in tomato plants. This research uses Completely Randomized Design of non factorial pattern consisting of 4 treatments using 5 replications, each replication consisting of 4 plant units. the active formulation by several form formulation of Trichoderma spp is F0 = Control (without treatment), F1 = Leaf pelet formulation 3 g (+ 10 grain) / polybag, F2 = Dry corn solid formula 3 g / polybag and F3 = Commercial liquid product formulation 100 ml / polybag. The results showed that the application of some form of formulation Trichoderma spp able to give a real effect on the percentage of wilting plants and plant height as well as the percentage of stems that discoloration on xylem.


Sign in / Sign up

Export Citation Format

Share Document