RESPONSE OF FABABEAN YIELD, PROTEIN PRODUCTION, AND WATER USE TO IRRIGATION

1980 ◽  
Vol 60 (1) ◽  
pp. 91-96 ◽  
Author(s):  
K. K. KROGMAN ◽  
E. H. HOBBS ◽  
R. C. McKENZIE

Response of fababeans (Vicia faba L.) to irrigation was studied by subjecting the crop to soil moisture stress (withholding irrigation) during the latter parts of the growing season or to levels of soil moisture (varying the frequency of irrigation) throughout the growing season. Increased soil moisture supply under either of these procedures increased yields of seed, straw and crude protein. Evapotranspiration (ET) for the growing season averaged 544 mm, which is 16% greater than that of irrigated cereals. Efficiency of water use (plant product per unit of ET) was about constant over the range of treatments and yields were linearly correlated with ET. Soil moisture must be maintained at least above 50% of the available range to achieve the full yield potential of fababeans. The potential yield of crude protein equals or exceeds that of other irrigated crops in southern Alberta.

1977 ◽  
Vol 57 (3) ◽  
pp. 891-896 ◽  
Author(s):  
K. K. KROGMAN ◽  
E. H. HOBBS

In field plot experiments conducted in southern Alberta over a 6-yr period, highest seed yields of alfalfa (Medicago sativa L. cv. Beaver) were obtained with one or two irrigations in the first half of the growing season. In outdoor lysimeters protected from rain, moisture stress for more than 8 days before seed ripening severely reduced seed production. Under field conditions, stored soil moisture from irrigation during the vegetative stage of growth plus occasional rain in July and August permitted irrigation of alfalfa for seed to be stopped at the bud to early bloom stage (June to early July).


1969 ◽  
Vol 49 (6) ◽  
pp. 685-699 ◽  
Author(s):  
C. A. Campbell ◽  
W. L. Pelton ◽  
K. F. Nielsen

The influence of solar radiation on the growth and yield of Chinook wheat was determined in a 5-year field shading study, and a 1-year, 3 × 3 shading × soil moisture lysimeter experiment.In the field, shading with saran mesh reduced solar radiation and wind but had little effect on air or soil temperature. In moist years shade maintained soil moisture at a higher level than no shade. Generally, mean leaf area ratio decreased and mean net assimilation rate and relative growth rate increased linearly with increases in the log of light intensity. There were interactions between shading × years (weather) relative to dry matter yield. The efficiency with which solar energy was used for grain production increased with shading. The effect of shading on crude protein and soluble sugars in grain was variable.In the lysimeter shading study, regression equations were used to relate several plant characters to shading and soil moisture (in the available range). Plant height, stem diameter, days to head, number of tillers, weights of grain and of straw, and percent cellulose were negatively related to soil moisture stress; crude protein was positively related. Days to head and crude protein were negatively related to light intensity, but all the other characters were positively related. The partial regression coefficients indicated that the influence of soil moisture stress was much more important than solar radiation on the crude protein content of the grain.


1985 ◽  
Vol 100 (3) ◽  
pp. 313-328 ◽  
Author(s):  
C. R. BLACK ◽  
D.-Y. TANG ◽  
C. K. ONG ◽  
A. SOLON ◽  
L. P. SIMMONDS

Plant Disease ◽  
2000 ◽  
Vol 84 (8) ◽  
pp. 895-900 ◽  
Author(s):  
S. R. Kendig ◽  
J. C. Rupe ◽  
H. D. Scott

The effects of irrigation and soil water stress on Macrophomina phaseolina microsclerotial (MS) densities in the soil and roots of soybean were studied in 1988, 1989, and 1990. Soybean cvs. Davis and Lloyd received irrigation until flowering (TAR2), after flowering (IAR2), full season (FSI), or not at all (NI). Soil water matric potentials at 15- and 30-cm depths were recorded throughout the growing season and used to schedule irrigation. Soil MS densities were determined at the beginning of each season. Root MS densities were determined periodically throughout the growing season. Microsclerotia were present in the roots of irrigated as well as nonirrigated soybean within 6 weeks after planting. By vegetative growth stage V13, these densities reached relatively stable levels in the NI and FSI treatments (2.23 to 2.35 and 1.35 to 1.63 log [microsclerotia per gram of dry root], respectively) through reproductive growth stage R6. After R6, irrigation was discontinued and root densities of microsclerotia increased in all treatments. Initiation (IAR2) or termination (TAR2) of irrigation at R2 resulted in significant changes in root MS densities, with densities reaching levels intermediate between those of FSI and NI treatments. Year to year differences in root colonization reflected differences in soil moisture due to rainfall. The rate of root colonization in response to soil moisture stress decreased with plant age. Root colonization was significantly greater in Davis than Lloyd at R5 and R8. This was reflected in a trend toward higher soil densities of M. phaseolina at planting in plots planted with Davis than in plots planted with Lloyd. Although no charcoal rot symptoms in the plant were observed in this study, these results indicated that water management can limit, but not prevent, colonization of soybean by M. phaseolina, that cultivars differ in colonization, and that these differences may affect soil densities of the fungus.


2014 ◽  
Vol 7 (5) ◽  
pp. 2193-2222 ◽  
Author(s):  
G. B. Bonan ◽  
M. Williams ◽  
R. A. Fisher ◽  
K. W. Oleson

Abstract. The Ball–Berry stomatal conductance model is commonly used in earth system models to simulate biotic regulation of evapotranspiration. However, the dependence of stomatal conductance (gs) on vapor pressure deficit (Ds) and soil moisture must be empirically parameterized. We evaluated the Ball–Berry model used in the Community Land Model version 4.5 (CLM4.5) and an alternative stomatal conductance model that links leaf gas exchange, plant hydraulic constraints, and the soil–plant–atmosphere continuum (SPA). The SPA model simulates stomatal conductance numerically by (1) optimizing photosynthetic carbon gain per unit water loss while (2) constraining stomatal opening to prevent leaf water potential from dropping below a critical minimum. We evaluated two optimization algorithms: intrinsic water-use efficiency (ΔAn /Δgs, the marginal carbon gain of stomatal opening) and water-use efficiency (ΔAn /ΔEl, the marginal carbon gain of transpiration water loss). We implemented the stomatal models in a multi-layer plant canopy model to resolve profiles of gas exchange, leaf water potential, and plant hydraulics within the canopy, and evaluated the simulations using leaf analyses, eddy covariance fluxes at six forest sites, and parameter sensitivity analyses. The primary differences among stomatal models relate to soil moisture stress and vapor pressure deficit responses. Without soil moisture stress, the performance of the SPA stomatal model was comparable to or slightly better than the CLM Ball–Berry model in flux tower simulations, but was significantly better than the CLM Ball–Berry model when there was soil moisture stress. Functional dependence of gs on soil moisture emerged from water flow along the soil-to-leaf pathway rather than being imposed a priori, as in the CLM Ball–Berry model. Similar functional dependence of gs on Ds emerged from the ΔAn/ΔEl optimization, but not the ΔAn /gs optimization. Two parameters (stomatal efficiency and root hydraulic conductivity) minimized errors with the SPA stomatal model. The critical stomatal efficiency for optimization (ι) gave results consistent with relationships between maximum An and gs seen in leaf trait data sets and is related to the slope (g1) of the Ball–Berry model. Root hydraulic conductivity (Rr*) was consistent with estimates from literature surveys. The two central concepts embodied in the SPA stomatal model, that plants account for both water-use efficiency and for hydraulic safety in regulating stomatal conductance, imply a notion of optimal plant strategies and provide testable model hypotheses, rather than empirical descriptions of plant behavior.


1987 ◽  
Vol 67 (4) ◽  
pp. 877-891 ◽  
Author(s):  
D. C. MaCKAY ◽  
J. M. CAREFOOT

A series of 10 field experiments conducted over a 4-yr period (1973–1976) on three of the most important Brown Chernozemic soils in the irrigated area of southern Alberta gave no significant yield responses to applied K (at rates of 0, 50, 100 and 150 kg ha −1 in 1973 and 0, 127, 254 and 508 kg ha−1 in the other years), using potato (Solanum tuberosum L.) as the test crop. The experiments included several cultivars, a variety of growing conditions, and diverse cropping histories. In addition, the K concentration of uppermost mature leaf blades obtained at the 10%-bloom stage were only slightly affected by K treatments, except in 1 yr (1975). The increased K uptake in 1975 was related to greater precipitation before irrigation was applied (66, 99 and 94 mm, respectively) during April, May and June in comparison with the long-term average of 32, 54 and 76 mm. The effects of early-season soil moisture stress were partially confirmed in a controlled environment (CE) experiment in which maintenance of soil water potentials between −30 and −20 kPa throughout the season caused greater uptake of added K in comparison with soil moisture stress in the 0–15 cm zone prior to the 10%-bloom stage. Yields of tubers were depressed with the stressed treatment, but there was no yield response to added K. Leaf analyses from the field experiments indicate that the critical K level of 43 g kg−1, which was established earlier for the Russet Burbank cultivar growing on Podzol soils is too high for irrigated Chernozemic soils, and that 30 g kg−1 would be a more valid tentative value. In a second CE experiment, designed to quantify the fate of applied K during intensive cropping, no yield responses to K applications were obtained with alfalfa on a coarse-textured Cavendish sandy loam during a 2-yr period. With no applied K, crop uptake reduced exchangeable K levels throughout the entire profile (66 cm) by about 20%. Thirty percent of the K removed by the crop originated from nonexchangeable soil K. With the highest K rate (450 kg ha−1 applied twice), 50% could be attributed to plant uptake, 15% to increased exchangeable K, and 35% to fixation in the nonexchangeable form. It is concluded that response to applied K on irrigated Brown and Dark Brown Chernozemic soils of southern Alberta is unlikely, even with intensive cropping, for some time in the future. A practical strategy for producers could be to apply moderate rates of K as a conservation measure when economic conditions are favorable and to rely on soil reserves in times of financial pressures. Key words: K-release, K-fixation, leaf analysis, fertilizer K requirements, soil water stress, K deficiency


1962 ◽  
Vol 42 (1) ◽  
pp. 7-12 ◽  
Author(s):  
S. J. Bourget ◽  
R. B. Carson

Yields of oats and alfalfa grown in two soils in the greenhouse, with and without fertilizer, usually decreased with increasing moisture stress obtained by depleting the available moisture to 75, 50, 25 and nearly 0 per cent.An application of 6-20-20 fertilizer for oats and of 0-20-20 for alfalfa at the rate of 1000 pounds per acre gave a marked increase in crops yield and it resulted in a more efficient use of water by the crops than was obtained without fertilizer, although the total amount of water used was greater with than without fertilizer. The water-use efficiency values for oats usually increased with decreasing available water whereas those for alfalfa were less consistent.The composition in nitrogen, phosphorus, potassium, calcium and magnesium of the plant tissues did not vary greatly. However, the phosphorus content of oats grain decreased with increasing soil moisture stress unless fertilizer was added, indicating that soil phosphorus became less available for oats at high moisture stress.


Sign in / Sign up

Export Citation Format

Share Document