scholarly journals The effect of nitrogen on growth and architecture of Fraxinus pennsylvanica 'Patmore' (green ash) in Field-grow containers at two sites in Manitoba, Canada

1996 ◽  
Vol 76 (4) ◽  
pp. 825-833 ◽  
Author(s):  
W. R. Remphrey ◽  
C. G. Davidson

Fraxinus pennsylvanica var. subintegerrima (Vahl) Fern. 'Patmore' green ash was established at two sites in southern Manitoba. Four levels of N fertilizer (4.5–400 ppm) were applied during two growing seasons. Growth and development of the trees was dependent on the site and local environmental conditions. At Morden, the annual height growth increment was greater with lower levels of N applications and declined at higher levels, while at Winnipeg higher levels resulted in greater growth. Stem diameter changes followed a similar pattern. The numbers of lateral shoots per parent shoot were only weakly affected by N treatment and any differences appeared to be an indirect effect of parental shoot length. The Field-grow containers at the Winnipeg site were installed in crass-sod which penetrated the containers and appeared to result in competition for N resources. The Morden site was kept cultivated and thus there was no such competition. At Morden, it is possible that wicking from the surrounding soil may have moved excessive salts into the containers resulting in high conductivity values and toxicity. Key words: Field-grow, biomass, roots, architecture, fertilization, Fraxinus pennsylvanica

1992 ◽  
Vol 70 (6) ◽  
pp. 1147-1153 ◽  
Author(s):  
W. R. Remphrey ◽  
C. G. Davidson

The architecture of branch complexes, 10 to 14 years old, from mature male and female green ash trees (Fraxinus pennsylvanica var. subintegerrima (Vahl) Fern.) of two crown shapes was analyzed. Shoot length (annual increment of extension growth) declined with increasing order of branching and 47% of the shoots were less than 30 mm. Although variable, shoot length also tended to decrease along an axis. There was a consistent positive correlation between lengths and numbers of daughter shoots and lengths of parent shoots, but for a given parent length the predicted values declined proportionately with increasing order. An index of apical control comparing the lengths of terminal shoots with the longest lateral shoots revealed weaker apical control with increasing branch order in the broad, rounded crown shape class compared with the narrow shape class. Elevation angles of terminal daughter shoots were highly correlated with that of the parent shoot. When a shoot tip aborted, the terminal was replaced, but a weakening of apical control resulted in the modification of branch development and the formation of forks in certain axes. There was a reduction in the angle of divergence of lateral shoots in response to shoot-tip abortion, the terminal replacements being the most acute. Key words: crown architecture, shoot-tip abortion, green ash, Fraxinus, tree form, branching pattern.


1989 ◽  
Vol 67 (7) ◽  
pp. 1966-1978 ◽  
Author(s):  
W. R. Remphrey

From initiation to fruit set, which occurs over three growing seasons, eight stages are recognized in the development of axillary inflorescences in the dioecious species Fraxinus pennsylvanica var. subintegerrima (Vahl) Fern, (green ash). In the first season, buds are initiated in the axils of foliage leaves. As the shoots expand in the following spring, the buds complete their development. Although similar at first, differences begin to emerge between vegetative and inflorescence buds in that the latter produce robust second-order meristems, the incipient paracladia, protruding close to the original apex. After about 3–4 weeks, when the initiation of such buds is complete, the terminal and subtending lateral meristems present on each axis develop into a three-membered cluster of floral buds. There was a mean of 214.3 ± 12.2 floral buds initiated per female inflorescence, and the number generally increased with the length of the associated shoot. A ridge, the incipient perianth, begins to form around the periphery of each rounded floral apex. Male and female floral buds are not distinguishable at this stage, but the inflorescence buds are distinctly different from vegetative buds. The male and female buds then diverge in their development in that an identation forms at the summit of the incipient gynoecium and male buds initiate two or three anthers. By autumn, the gynoecium is distinctly conical, with an orifice at its summit, and the anthers are lobed. There is lobing of the perianth ridge, but in the mature flower distinct organs traceable to such lobes could not readily be identified.


1990 ◽  
Vol 68 (9) ◽  
pp. 2035-2043 ◽  
Author(s):  
Campbell G. Davidson ◽  
William R. Remphrey

Architectural variables from male and female green ash (Fraxinus pennsylvanica var. subintergerrima (Vahl) Fern.) comprising three different crown-shape classes were analyzed at four different crown levels to determine which variables influenced crown shape. The narrow conical shape class had the largest mid shoot diameters and the smallest shoot tip abortion frequencies. The broad to round shape class had greater abortion frequency overall. In addition, there was less difference in shoot length between the top and bottom of the crown. The more oval shape class was intermediate for both shoot diameters and abortion frequency. Parent and daughter shoot lengths were longer, midshoot diameters larger, and elevation angles greater with increasing sampling height in the tree. Male trees had shorter shoot lengths and shorter and fewer daughter lateral shoots than female trees. Principal component analysis was used to identify shoot lengths, elevation angles, and abortion frequencies as potentially key variables in understanding crown shape in green ash. Interrelationships of many of the architectural variables suggest that a significant change in one may lead to changes in others, which ultimately would lead to changes in overall crown shape.


HortScience ◽  
2005 ◽  
Vol 40 (4) ◽  
pp. 1049C-1049
Author(s):  
Catherine Neal

Bare-root, 4-ft whips of green ash (Fraxinus pennsylvanica `Marshall's Seedless') were planted in June 2001 in a randomized complete-block design with three trees per plot. An incomplete factorial design was used to test whether annual fertilizer rate and/or application dates affected growth. Treatments were fertilized from 0 to 4 times per year in mid-April, mid-June, mid-August, and/or mid-October. A rate of 1 lb of nitrogen (N)/1000 sq ft was used whenever fertilizer was applied to a plot. Each treatment received 0, 2, 3, or 4 lbs N/1000 sq ft/year depending on the number of applications. Caliper, height, and terminal growth were measured annually for three growing seasons. At the end of seasons 2 and 3, one plant per plot was destructively harvested and processed to obtain dry weights of shoots and roots, and the shoot to root ratio was calculated. Data were analyzed by analysis of variance with least square means contrasts. Treatment effects on top weights, root weights, and shoot to root ratios were nonsignificant. There were significant treatment differences for caliper and terminal growth in years 1 and 2, but not 3. A set of orthogonal contrasts was used to determine that the effect was due primarily to growth differences in plants receiving 2 vs. 3 or 4 lbs N/1000 sq ft/year, but that 3 vs. 4 lbs made no difference. Another set of planned, but nonorthogonal contrasts was used to compare application date effects. Plants fertilized in June were greater in caliper and terminal growth in the first 2 years than plants not fertilized in June. There were nonsignificant effects of fertilizing vs. not fertilizing in late fall or early spring.


HortScience ◽  
1996 ◽  
Vol 31 (4) ◽  
pp. 660f-660
Author(s):  
W.T. Witte ◽  
R.J. Sauve ◽  
P.C. Flanagan

Eighty-one accessions of oak species, hybrids, and cultivars from commercially available sources were established at TSU-NCRS in Fall 1993 and Spring 1994, using 10 single-plant replications in a randomized complete block. Drip irrigation was begun on a regular basis May 1994, and plants were fertilized regularly. Height and diameter was recorded Fall 1994 and 1995. Fastest growing oaks in order of cm height growth increment over the two growing seasons were nigra, phellos, texana nuttalli, cerris, macrocarpa, falcata pagodaefolia, macrocarpa `Maximus', acutissima, austrina, shumardii, muehlenbergi, falcata, robur fastigiata, lyrata, virginiana, palustris, acutissima `Gobbler', glandulifera, macrocarpa `Ashworth', gambelli ×macrocarpa, alba. Most evergeen oaks did not survive Winter 1995–96, and data will be reported on winterkill.


2021 ◽  
Author(s):  
David K Schnake ◽  
Scott D Roberts ◽  
John L Willis ◽  
John D Kushla ◽  
Ian A Munn

Abstract This study was established to evaluate underplanting as a method of reestablishing a shortleaf pine (Pinus echinata Mill.) component to a dry upland hardwood stand in the Piedmont region of the southeastern United States. Replicated treatment plots were harvested to retain four levels (approximately 0, 3, 7, and 10 m2 of basal area per hectare) of residual overstory density. One-year-old containerized seedlings with both smaller (93.4 cm3) and larger (113.1 cm3) plugs and bareroot seedlings were underplanted beneath the residual overstory treatments. After five growing seasons, seedling survival averaged 61% and was not meaningfully affected by residual overstory density. Seedling height growth ranged from 1.42 m to 2.61 m and was inversely related to residual overstory density. Containerized seedlings with larger plugs had the highest survival (77.4%) and best height growth (2.11 m), followed by containerized seedlings with smaller plugs (64.3%, 1.76 m) and bareroot seedlings (40.2%, 1.85 m). The results of this study indicated that underplanting containerized seedlings, particularly those with higher plug volume and greater plug depth, was a suitable option for reestablishing shortleaf pine on drier, hardwood dominated upland sites in the Piedmont. However, even low levels of overstory retention suppressed seedling height growth after a few years. Study Implications The study was conducted on a dry upland site typical of the North Carolina Piedmont. Retaining up to 10 m2 ha–1 of oak and hickory overstory basal area did not strongly affect survival among underplanted shortleaf pine seedlings after five growing seasons. However, overstory cover as low as 3 m2 ha–1 had negative effects on height growth of underplanted seedlings over the same time period. Height growth declined as overstory density increased. Containerized seedlings had better survival than bareroot seedlings. Further improvements in survival and height growth were realized by planting containerized seedlings with higher plug volume and greater plug depth.


1985 ◽  
Vol 63 (7) ◽  
pp. 1296-1302 ◽  
Author(s):  
W. R. Remphrey ◽  
G. R. Powell

Sylleptic branching occurred on the current (1983) height-growth increment in 44% of Larix laricina (Du Roi) K. Koch (tamarack) saplings sampled from a natural population near Fredericton, N.B. Although variable, the occurrence and amount of syllepsis tended to increase with parental shoot length. Sylleptic shoots were generally located on the proximal halves of parental shoots. In most cases, the proximally and distally situated sylleptic shoots were somewhat shorter than those in between. The lengths of terminal shoots arising from sylleptic shoots were significantly correlated with parental shoot length, current tree leader length, and location of the branch on its parental shoot. The lengths and elevation angles of terminal extensions from sylleptic shoots tended to be greater than those from nonsylleptic (proleptic) lateral long shoots borne in the same region of the height-growth increment. Architectural characteristics of the extensions resembled those of the more distal proleptic shoots, which develop into major branches. Thus, an additional complement of major lateral branches appeared to be developing where syllepsis occurred. Quantitative relationships depicting sylleptic branching patterns were incorporated into a previous architectural model and simulations of crown architecture which included syllepsis were obtained.


2002 ◽  
Vol 80 (12) ◽  
pp. 1274-1282 ◽  
Author(s):  
William R Remphrey ◽  
Grant A Bartlett ◽  
Campbell G Davidson

The relationships between shoot size and morphological patterns and crown location were investigated in 6-year-old green ash (Fraxinus pennsylvanica var. subintegerrima (Vahl) Fern.). In general, shoots were shorter in the inner part of the crown compared with either the top or bottom near the periphery. The differences were related to a reduction in both metamer number and length. In some cases the lower crown location was similar to the upper; in other cases it was similar to the inside. The fate of buds along a shoot was generally dependent on shoot position in the crown. A greater proportion of buds became lateral shoots and inflorescences in the top compared with the bottom of the crown, and the fewest developed towards the inside location. As the number of metamers per shoot increased, there was an increase in the proportion of lateral shoots produced and a decrease in the proportion of inflorescences and (or) aborted buds. For shoots with the same number of metamers per shoot, those in the top produced a greater proportion of inflorescences and lateral shoots compared with the bottom or inside. In all crown locations, the highest number of buds aborted near the base, the greatest proportion of inflorescences occurred in mid-shoot regions, and the largest proportion of lateral shoots occurred near the tip. The information presented in this paper will be used as a component in developing a simulation model of crown development.Key words: architecture, shoot, bud fate, green ash, metamer.


1988 ◽  
Vol 18 (6) ◽  
pp. 723-727 ◽  
Author(s):  
Hank A. Margolis ◽  
Robert R. Gagnon ◽  
David Pothier ◽  
Marius Pineau

Balsam fir trees established from advanced regeneration following a clear-cut in 1970 were pruned in June 1985 to live crown ratios of 0.6, 0.4, and 0.2 compared with control trees, which had live crown ratios of 0.8. After two growing seasons, we investigated the homeostatic adjustment of these trees to the loss of their foliage. The height growth, basal area growth, sapwood cross-sectional area, heartwood area, and sapwood saturated permeability of the trees that were pruned to a 0.6 live crown ratio were not significantly different from those of the controls. On the other hand, height growth increment following pruning was reduced 16.7 cm (23%) and 19.5 cm (27%) for the trees pruned to 0.4 and 0.2 live crown ratios, respectively. Furthermore, basal area growth following pruning was reduced 3.2 cm2 (30%) and 6.5 cm2 (61%), respectively. While trees in both the 0.4 and 0.2 live crown ratio pruning treatments did adjust their breast height sapwood area in response to the removal of foliage, the nature of this adjustment differed between the two treatments. For the trees with the 0.4 live crown ratio, sapwood area was reduced because of a reduction in basal area growth but the area of heartwood remained unchanged. For the trees with the 0.2 live crown ratio, the changes in sapwood area were due both to a reduction in basal area growth and an expansion of the heartwood. The saturated permeability of sapwood was not significantly affected by pruning. The adaptive implications of balsam fir's response to the loss of foliage are discussed in terms of the optimizing the allocation of a limited amount of available carbon.


1997 ◽  
Vol 21 (3) ◽  
pp. 116-122 ◽  
Author(s):  
Thomas A. Waldrop

Abstract Four variations of the fell-and-burn technique, a system developed to produce mixed pine-hardwood stands in the Southern Appalachian Mountains, were compared in the Piedmont region. All variations of this technique successfully improved the commercial value of low-quality hardwood stands by introducing a pine component. After six growing seasons, loblolly pine (Pinus taeda L.) occupied the dominant crown position and oaks the codominant position in fell-and-burn treated stands on poor to medium quality sites. The precise timing of felling residual stems, as prescribed by the fell-and-burn technique, may be flexible because winter and spring felling produced similar results. Although summer site preparation burns reduced hardwood height growth by reducing the length of the first growing season, they did not improve pine survival or growth. Pines were as tall as hardwoods within four growing seasons in burned plots and within six growing seasons in unburned plots. Additional research is needed to determine the level or intensity of site preparation needed to establish pine-hardwood mixtures over a range of site conditions. South. J. Appl. For. 21(3):116-122.


Sign in / Sign up

Export Citation Format

Share Document