SimPLE.ca: Simulator of productivity loss due to erosion for Canada

2008 ◽  
Vol 88 (3) ◽  
pp. 365-376 ◽  
Author(s):  
E. Bremer ◽  
K J Greer ◽  
M. Black ◽  
L. Townley-Smith ◽  
S S Malhi ◽  
...  

Robust and practical estimates of the impact of soil erosion on crop productivity are essential for developing and implementing appropriate solutions for soil erosion on agricultural land. The objective of this study was to develop a simple model which captured the most important relationships between topsoil erosion and productivity loss for major agricultural regions of Canada. The model was developed for spring wheat (Triticum aestivum L.) and corn (Zea mays L.). Using annual time steps, maximum crop yields were reduced by soil erosion due to losses in available water-holding capacity, N-mineralization potential and available P. Using minimal input data, the model accounted for 56% of the variation in relative yields (fraction of non-eroded controls) determined in field studies using desurfacing or comparison plot methods. Key words: Available N and P, model, nutrients, productivity loss, simulator, soil erosion, soil properties, yield loss

Author(s):  
Anatolii Kucher ◽  
Lesia Kucher ◽  
Inna Sysoieva ◽  
Borys Pohrishchuk

Purpose. The main objective of this paper is (і) to determinate the economic loss due to crop productivity loss caused by soil erosion in Ukraine, and (іі) to present the results of the econometric modeling of soil erosion impact on the efficiency crop production at the regional and district level. Methodology / approach. This study uses the following methods: expert assessments and monographic (for the assessment of economic losses due to crop productivity loss from spreading soil erosion); graphical (for building three-dimensional graphs); econometric modeling (to develop a mathematical model of the dependence of the gross crop production and income from sales per 100 hectares from the share of eroded arable land in its total area and production costs in crop industry per 100 hectares); abstract-and-logical (for generalization of the research results). To solve the assigned tasks, linear and quadratic econometric models (production functions) were developed using a dataset (і) from 168 observations (on the example of Ukrainian regions for 2010–2016) and (ii) from 189 observations (on the example of districts of Kharkiv region for 2010–2016). This study was conducted in order to test the hypothesis that the increase in the area of eroded arable land has a negative effect on the gross output of crop production. Results. Our expert assessment of economic losses due to crop productivity loss from spread of soil erosion on agricultural land in Ukraine is 224 mln USD. The obtained results confirm the hypothesis about the negative relationship between gross crop output and the level of land erosion. The obtained data confirm that an increase in the area of eroded arable land by 1 % leads to a decrease in the gross output of crop production by 0.20 % per 100 hectares of agricultural land in total, and in the third group of the studied subjects (the share of eroded arable land in their total area is more than 50 %) – by 0.61 %, respectively. Originality / scientific novelty. For the first time, linear and nonlinear (quadratic) econometric models were developed, which made it possible to carry out quantitative assessment of the impact of the soil erosion and the financial support (production costs in crop industry) per hectare on the formation of the financial results (gross crop output and income) of business entities in Ukrainian agriculture. The provision on the economics of soil erosion was further developed in terms of expert assessment of losses from this type of degradation and confirmation of the effect of the economic law of diminishing returns, which should be taken into account when developing measures for sustainable land management. Practical value / implications. The main results of the study can be used for the development, substantiation and implementation of soil protection measures for the sustainable use of agricultural land and/or to informed decision-making at different levels of management concerning restoration of eroded land.


2019 ◽  
Vol 118 (10) ◽  
pp. 332-340
Author(s):  
Dr.P. Prema ◽  
Ms.R. Kanchana

India is a large country with all types of climates and different kinds of soil requiring different types of farming. Most of the agricultural land in India is dependent on rainfall for irrigation. India has about 15 Agro-climatic zones with different types of farming methods and crops. As most of the population is dependent on agriculture and two-third of the country depend on monsoon rains to aid in agriculture, any change in frequency of the rains will affect these areas critically. Assessment of the effects of global climate changes on agriculture might help to properly anticipate and adapt farming to maximize agricultural production. At the same time agriculture has been shown significant effects on climate change, primarily through the production and release of greenhouse gases such as carbon dioxide, methane, and nitrous oxide. The impact of climate change on agriculture could result in problems like food security and may threaten the livelihood on which much of the population depends. Climate change can affect crop yields ( both positively and negatively), as well as the types of crop that can be grown in certain areas, by impacting agricultural inputs such as water for irrigation, amounts of solar radiation that affect plant growth, as well as prevalence of pests. The impact of climate change on wheat showed that its yield decreased due to the adverse effects of temperature during grain filling and maturity stages of the growth. The results of this study indicate that crop characteristics such as sensitivity of grain filling duration to temperature, play a major role in determining the effects of climate change on crop productivity. Several studies projected increase or decrease in yields of cereal crops, oilseed and pulses crops depending on interaction of temperature and CO2 changes in India. The present study has selected a thirteen years period from 2000 – 2012. .


2020 ◽  
Vol 2 ◽  
Author(s):  
Nathalie Colbach ◽  
Sandrine Petit ◽  
Bruno Chauvel ◽  
Violaine Deytieux ◽  
Martin Lechenet ◽  
...  

The growing recognition of the environmental and health issues associated to pesticide use requires to investigate how to manage weeds with less or no herbicides in arable farming while maintaining crop productivity. The questions of weed harmfulness, herbicide efficacy, the effects of herbicide use on crop yields, and the effect of reducing herbicides on crop production have been addressed over the years but results and interpretations often appear contradictory. In this paper, we critically analyze studies that have focused on the herbicide use, weeds and crop yield nexus. We identified many inconsistencies in the published results and demonstrate that these often stem from differences in the methodologies used and in the choice of the conceptual model that links the three items. Our main findings are: (1) although our review confirms that herbicide reduction increases weed infestation if not compensated by other cultural techniques, there are many shortcomings in the different methods used to assess the impact of weeds on crop production; (2) Reducing herbicide use rarely results in increased crop yield loss due to weeds if farmers compensate low herbicide use by other efficient cultural practices; (3) There is a need for comprehensive studies describing the effect of cropping systems on crop production that explicitly include weeds and disentangle the impact of herbicides from the effect of other practices on weeds and on crop production. We propose a framework that presents all the links and feed-backs that must be considered when analyzing the herbicide-weed-crop yield nexus. We then provide a number of methodological recommendations for future studies. We conclude that, since weeds are causing yield loss, reduced herbicide use and maintained crop productivity necessarily requires a redesign of cropping systems. These new systems should include both agronomic and biodiversity-based levers acting in concert to deliver sustainable weed management.


Agropedology ◽  
2019 ◽  
Vol 28 (2) ◽  
Author(s):  
S. V. Shejale ◽  
◽  
S. B. Nandgude ◽  
S. S. Salunkhe ◽  
M. A. Phadtare ◽  
...  

Present research work was carried out on soil erosion and crop productivity loss in Palghar and Thane districts. The study also describes tolerable soil loss and relationship between top-soil loss and yield loss. The estimated average annual soil loss was 40.45 t ha-1yr-1 before adoption of the soil and water conservation measures (by USLE method) and estimated average tolerable soil loss was 9.36 t ha-1 yr-1, for Palghar district. Similarly, for Thane district the estimated average annual soil loss and tolerable soil loss were found to be 35.89 t ha-1 yr-1 and 9.61 t ha-1 yr-1, respectively for Thane district. The estimated average conservation practice factor (P) factors were obtained as 0.32 for Palghar district and 0.30 for Thane district to bring the soil loss below the tolerable limit. After adoption of soil and water conservation measures, the estimated soil loss were 9.02 t ha-1 yr-1 and 9.38 t ha-1 yr-1 for Palghar and Thane districts, respectively.


2018 ◽  
Vol 8 (2) ◽  
pp. 20
Author(s):  
Tesfaye Samuel Saguye

Land degradation is increasing in severity and extent in many parts of the world. Success in arresting land degradation entails an improved understanding of its causes, process, indicators and impacts. Various scientific methodologies have been employed to assess land degradation globally. However, the use of local community knowledge in elucidating the causes, process, indicators and effects of land degradation has seen little application by scientists and policy makers. Land degradation may be a physical process, but its underlying causes are firmly rooted in the socio-economic, political and cultural environment in which land users operate. Analyzing the root causes and effects of land degradation from local community knowledge, perception and adapting strategies perspective will provide information that is essential for designing and promoting sustainable land management practices. The main objective of this study was to analyze the perceptions of farmers’ on the impact of land degradation hazard on agricultural land productivity decline associated with soil erosion and fertility loss. The study used a multistage sampling procedure to select sample respondent households. The sample size of the study was 120 household heads and 226 farm plots managed by these farmers. The primary data of the study were collected by using semi-structured Interview, focus group discussions and field observation. Both descriptive statistics and econometric techniques were used for data analysis. Descriptive results show that 57percent of the respondents were perceived the severity and its consequence on agricultural land productivity. The following indicators of soil erosion and fertility loss were generally perceived and observed by farmers’ in the study area: gullies formations, soil accumulation around clumps of vegetation, soil deposits on gentle slopes, exposed roots, muddy water, sedimentation in streams and rivers, change in vegetation species, increased runoff, and reduced rooting depth. The direct human activities which were perceived to be causing land degradation in the study area include: deforestation and clearing of vegetation, overgrazing, steep slope cultivation and continuous cropping. The farmers’ possibility of perceiving the impact of land degradation hazard on agricultural land productivity was primarily determined by institutional, psychological, demographic and by bio-physical factors. Farmers who perceive their land as deteriorating and producing less than desired, tend to adopt improved land management practices. On the other hand, farmers who perceive their land to be fertile tend to have low adoption of conservation practices. In order to overcome this land degradation and its consequent effects, the study recommended a need for the government to enforce effective policies to control and prevent land degradation and these policies should be community inclusive /participatory founded up on indigenous and age-honored knowledge and tradition of farmers' natural resource management as well as introduced scientific practices.


Agronomy ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 1085 ◽  
Author(s):  
Amanullah ◽  
Inamullah ◽  
Jawaher Alkahtani ◽  
Mohamed Soliman Elshikh ◽  
Mona S. Alwahibi ◽  
...  

Continuous cropping of rice (Oryza sativa L.) and wheat (Triticum aestivum L.) deplete soil fertility, reduced crop productivity, and grower’s income. Phosphorus (P) and zinc (Zn) deficiencies are considered important nutritional constraints under rice-wheat cropping system. One strategy to increase crop productivity and grower’s income under the rice-wheat system is the balanced application of P and Zn fertilizers. The objective of this research was to evaluate the impact of sole and various combinations of P (0, 40, 80, and 120 kg ha−1) and Zn levels (0, 5, 10, and 15 kg ha−1) on productivity (grain yield and yield components) and profitability (net returns) of different rice genotypes (cultivars) (fine (cv.Bamati-385) vs. coarse (cv. Fakhre-e-Malakand and cv. Pukhraj)) and their residual effect on the income of the succeeding wheat crop (cv. Siran-2010). The results revealed that both rice and wheat productivity and profitability was higher with the combined application of both nutrients at higher rates (80 and 120 kg P ha−1 and 10 and 15 kg Zn ha−1). The highest productivity and profitability was obtained with the cultivation of hybrid rice “Pukhraj” (Pukhraj > Fakhre-e-Malakand > Basmati-385). It was concluded from this study that application of higher P and Zn levels and growing of hybrid rice increased productivity and profitability under the rice-wheat cropping system.


Water ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1854 ◽  
Author(s):  
Pilar Martinez ◽  
Maria Blanco

Future agricultural development will be challenged by the impacts of climate change on water, which are expected to be particularly strong in southern European regions. Thus, exploring interrelations between agriculture and water under climate change is essential to frame informed policies that ensure sustainable water management while enhancing food production. Nevertheless, studies that address future agriculture development focus on climate-induced changes in crop productivity and often disregard the water dimension. In this research, we have conducted a sensitivity analysis of agricultural development to drivers of water use in Andalusia in 2050 based on outcomes from the CAPRI-Water model. The results from the analysis show that water cost is the most determinant factor in shaping agricultural land, offsetting the impact of the driver of water availability. In contrast, irrigation water use is driven not only by water cost but also by irrigation efficiency. The magnitude of the sensitivity to these drivers differs significantly across crops. Policies aimed at improving resource use efficiency can contribute to strengthening the resilience and adaptation capacity of future agricultural systems to climate change. To achieve this goal, the policies must consider crop sensitivity to irrigation costs and the potential rebound effect.


2020 ◽  
Vol 45 ◽  
pp. 21-33
Author(s):  
Natalia Pasichnyk ◽  
Serhii Lienkov ◽  
Sergey Shvorov ◽  
Larysa Komarova ◽  
Dmytro Komarchuk ◽  
...  

The article addresses applied aspects of using UAVs for monitoring winter wheat crops to assess the aftereffects of herbicides remaining on the culture of the predecessor. The issue has a local specificity related to inconsistencies of plant cultivation technologies and the inadequate study of the impact of modern plant protection products in domestic soil conditions. Restoring the crop yields is possible by timely identification of the causes of stress, but the time for decision-making is limited. This time can be reduced by state-of-the-art monitoring technologies applied at industrial scale. Laboratory studies using phyto cameras and spectral and spectral-spatial monitoring methods unambiguously testified to the stress caused by the aftereffect of herbicides, but did not allow to establish clear criteria. Therefore, we conducted field studies using UAV-mounted Slantrange complex and analyzing the DJI Matrice 200 to define the distribution of stress areas on the field. It was found that the reliability of monitoring data can increased computer data processing and computer training in the search for correlation links between the distribution of stress plants in the field and the implementation of technological operations, terrain topography, etc.


Author(s):  
Nilesh Patidar ◽  
A. K. Dwivedi ◽  
B. S. Dwivedi ◽  
R. K. Thakur ◽  
Jalendra Bairwa ◽  
...  

The field experiments was conducted is an ongoing All India Co-ordinate Research Project on “Long term Fertilizer Experiment” during 2018-2019 with soybean-wheat cropping sequence at the Research Farm Department of Soil Science, Jawaharlal Nehru Krishi Vishwa Vidyalaya, Jabalpur (M.P.), India. The objective of the study was the Impact of long term application of inorganic fertilizers and organic manure on soil fertility and crop productivity under soybean-wheat cropping system in a Vertisol. The experiment consists of ten treatments i.e. T1 50% NPK, T2 100% NPK, T3 150% NPK, T4 100% NPK + Hand Weeding, T5 100% NPK + Zn, T6 100% NP, T7 100% N, T8 100% NPK+ Farm Yard Manure, T9 100% NPK–S and T10 unfertilized plot (control) with four replications in a randomized block design. The findings of the present study indicated that the soil pH and EC were remaining unaltered even after continuous application of variable amounts of fertilizers either alone or in combination. A significant positive change in soil organic carbon, available N P K and S content was observed with continuous additions of balanced fertilizers and manures over the imbalanced or unfertilized treatments. The findings showed that the application of recommended dose of N, P and K (20:80:20 kg ha-1 for soybean and 120:80:40 kg ha-1 for wheat) with organic manure (FYM) @ 5 t ha-1 resulted in 185.8% and 325.9% increase over control in soybean and wheat yields, respectively. Thus, the continuous use of balanced fertilization, either alone or in combination with organic manure is necessary for sustaining soil fertility and productivity of crops.


Sign in / Sign up

Export Citation Format

Share Document