Fractionnement de la fertilisation azotée dans la production du bleuet nain sauvage et suivi de l’azote du sol

2010 ◽  
Vol 90 (1) ◽  
pp. 189-199 ◽  
Author(s):  
J. Lafond

In wild lowbush blueberry production, fertilizers are applied in the spring of the vegetative year. To increase fertilizers efficiency and to reduce environmental losses, fertilizer split applications between vegetative and production year have been proposed. The objectives of this project were to determine the effect of split application of the nitrogen (N) in the vegetative and production year on the wild blueberry production and on soil mineral N in six blueberry fields located in Saguenay-Lac-Saint Jean (Quebec, Canada). Four rates of ammonium sulfate were applied in the spring of the vegetative year (0, 30, 60 and 90 kg ha-1). These same rates were applied in the spring of the vegetative (50%) and production (50%) years. The 30 kg N ha-1 rate was also applied only in the production year. For all sites, maximum fruit yields (3800 kg ha-1) were obtained with 62 kg N ha-1. However, the maximum rate ranged from 25 to 90 kg N ha-1 according to the sites. Applying N in the vegetative and production years had comparable fruits yields to those obtained with the fertilizer applied only in the vegetative year. One month after N application, the amount of N-NH4 in the soil profile increased by 4 to 38 kg ha-1 compared with the control. Split N application reduced by 55 to 76% the amount of NH4-N in soil layers only in the vegetative year. Soil nitrate increased with N rates at the end of the growing season, indicating that a part of NH4-N was nitrified and can be potentially leached the under root zone. According to the various maximum N rates obtained and N fertilizer impacts on soil N mineral, there would be no agronomic or environmental benefit to splitting low rates (<30 kg ha-1). However, with higher rates, splitting N between vegetation and production years would maximize fruit yields and reduce environmental risk.Key words: Maximum N rate, ammonium, nitrate, Vaccinium angustifolium Ait., split fertilization

1984 ◽  
Vol 32 (4) ◽  
pp. 319-321 ◽  
Author(s):  
W.H. Prins

The effect of N fertilizer on seasonal response of predominantly Lolium perenne grassland, sward quality and productivity, herbage nitrate content and soil mineral N was studied in cutting trials lasting 1-6 years. At an assumed marginal profitability of 7.5 kg DM/kg N applied, the av. opt. annual N application on sand and clay soils was 420 kg/ha. At this rate, herbage nitrate content did not exceed 0.75% NO3 and accumulation of soil mineral N was minimal. At annual N rates exceeding 500 kg/ha sward quality deteriorated and productivity decreased the following year. (Abstract retrieved from CAB Abstracts by CABI’s permission)


1983 ◽  
Vol 63 (3) ◽  
pp. 563-578 ◽  
Author(s):  
D. W. L. READ ◽  
C. A. CAMPBELL ◽  
V. O. BIEDERBECK ◽  
G. E. WINKLEMAN

The distribution of NO3-N in the soil, and N uptake by the crop during the first 12 yr of a long-term rotation study at Swift Current, Saskatchewan were studied. A considerable amount of NO3-N appeared to be leached beyond the rooting zone of the cereal crop in years of above average precipitation and also in some relatively dry years with heavy spring rains. Thus, leaching of NO3-N seemed to occur even under continuous wheat rotations. At all times there was considerable NO3-N situated at the 60- to 120-cm depth. In wet years N uptake by the plants reduced the amount of NO3-N located in the subsoil, but in dry years the amount of NO3-N in the subsoil remained higher throughout the growing season. The latter could result in groundwater pollution, especially if such a soil was fallowed the next year. Fall rye (Secale cereale L.) made more efficient use of mineral N than spring-sown crops. In dry years more NO3-N persisted in the root zone of N-fertilized wheat than in the root zone of unfertilized wheat, but in wet and average years there was little difference due to N application. The average rate of net NO3-N production in fallow land from spring thaw to freeze-up (166 days) was 107 kg∙ha−1. Values ranged from about 60 to 175 kg∙ha−1 with the lowest values being obtained during very dry or very wet years. The quantity of N mineralized (kg∙ha−1) between spring thaw and freeze-up was related to precipitation (mm) by the equation Nmin = 29.0 + 0.20 precipitation for the 0- to 60-cm depth (R2 = 0.65*). Key words: Nitrate leaching, N uptake, crop rotations, N mineralization rate


1999 ◽  
Vol 133 (3) ◽  
pp. 263-274 ◽  
Author(s):  
J. VOS

In four field experiments, the effects of single nitrogen (N) applications at planting on yield and nitrogen uptake of potato (Solanum tuberosum L.) was compared with two or three split applications. The total amount of N applied was an experimental factor in three of the experiments. In two experiments, sequential observations were made during the growing season. Generally, splitting applications (up to 58 days after emergence) did not affect dry matter (DM) yield at maturity and tended to result in slightly lower DM concentration of tubers, whereas it slightly improved the utilization of nitrogen. Maximum haulm dry weight and N content were lower when less nitrogen was applied during the first 50 days after emergence (DAE). The crops absorbed little extra nitrogen after 60 DAE (except when three applications were given). Soil mineral N (0–60 cm) during the first month reflected the pattern of N application with values up to 27 g/m2 N. After 60 DAE, soil mineral N was always around 2–5 g/m2. The efficiency of N utilization, i.e. the ratio of the N content of the crop to total N available (initial soil mineral N+deposition+net mineralization) was 0·45 for unfertilized controls. The utilization of fertilizer N (i.e. the apparent N recovery) was generally somewhat improved by split applications, but declined with the total amount of N applied (range 0·48–0·72). N utilization and its complement, possible N loss, were similar for both experiments with sequential observations. Separate analysis of the movement of Br− indicated that some nitrate can be washed below 60 cm soil depth due to dispersion during rainfall. The current study showed that the time when N application can be adjusted to meet estimated requirements extends to (at least) 60 days after emergence. That period of time can be exploited to match the N application to the actual crop requirement as it changes during that period.


2002 ◽  
Vol 139 (2) ◽  
pp. 115-127 ◽  
Author(s):  
MARTYN SILGRAM ◽  
BRIAN J. CHAMBERS

The effects of straw incorporation (early and late cultivation) and straw burning were contrasted in a split-plot study examining the impact of long-term straw residue management, and six fertilizer nitrogen (N) rates on soil mineral nitrogen, crop fertilizer N requirements and nitrate leaching losses. The experiments ran from 1984 to 1997 on light-textured soils at ADAS Gleadthorpe (Nottinghamshire, UK) and Morley Research Centre (Norfolk, UK).Soil incorporation of the straw residues returned an estimated 633 kg N/ha at Gleadthorpe and 429 kg N/ha at Morley on the treatment receiving 150 kg/ha per year fertilizer N since 1984. Straw disposal method had no consistent effect on grain and straw yields, crop N uptake, or optimal fertilizer N rates. In every year there was a positive response (P<0·001) to fertilizer N in straw/grain yields, N contents and crop N offtakes at both sites. Nitrate leaching losses were slightly reduced by less than 10 kg N/ha where straw residues had been incorporated, while fertilizer N additions increased nitrate leached at both sites.At both sites there was a consistent effect (P<0·001) of straw disposal method on autumn soil mineral N, with values following the pattern burn>early incorporate>late plough. The incorporation of straw residues induced temporary N immobilization compared with the treatment where straw was burnt, while the earlier timing of tillage on the incorporate treatment resulted in slightly more mineral N compared with the later ploughed treatment. Fertilizer N rate increased (P<0·001) soil mineral nitrogen at both sites. At Morley, there was more organic carbon in the plough layer where straw had been incorporated (mean 1·09 g/100 g) rather than burnt (mean 0·89 g/100 g), and a strong positive relationship between organic carbon and fertilizer N rate (r2=93·2%, P<0·01). There was a detectable effect of fertilizer N on readily mineralizable N in the plough layer at both Gleadthorpe (P<0·001) and Morley (P<0·05). At Morley, there was a consistent trend (P=0·06) for readily mineralizable N to be higher where straw had been incorporated rather than burnt, indicating that ploughing-in residues may contribute to soil nitrogen supply over the longer term.


1988 ◽  
Vol 36 (4) ◽  
pp. 375-385
Author(s):  
W.J.M. Meijer ◽  
S. Vreeke

The relationship between the level of soil mineral N present in early spring and the economically optimum application rate of N fertilizer was investigated in field experiments in 1978-84 at 4 locations in the Netherlands with Lolium perenne, Poa pratensis and Festuca rubra. Spring dressings, as split and single applications, of 30-210 kg N/ha and autumn dressings of 0-90 kg N/ha were used. The optimum spring rates were linearly related to mineral N in the 0-90 cm soil layers in L. perenne. No such relationship existed for the other species. The economically optimum spring N rates were 110 and 84 kg/ha, and yields were highest with autumn N dressings of 60 and 30 kg/ha for P. pratensis and F. rubra, resp. Autumn dressing had no effect on L. perenne if the spring dressing was near or above the optimum. A split spring dressing produced greater vegetative regrowth and reduced yields. Seed yield responses to fertilization were related to number of inflorescences produced rather than weight of seed per inflorescence. (Abstract retrieved from CAB Abstracts by CABI’s permission)


1999 ◽  
Vol 8 (4-5) ◽  
pp. 423-440 ◽  
Author(s):  
L. PIETOLA ◽  
R. TANNI ◽  
P. ELONEN

The role of plant growth regulators (PGR) in nitrogen (N) fertilization of spring wheat and oats (CCC), fodder barley (etephon/mepiquat) and oilseed rape (etephone) in crop rotation was studied in 1993–1996 on loamy clay soil. Carry over effect of the N fertilization rates (0–180 kg ha-1 ) was evaluated in 1997. N fertilization rate for the best grain/seed yield (120–150 kg ha-1 ) was not affected by PGRs. The seed and N yields of oilseed rape were improved most frequently by recommended use of PGR. The yields of oats were increased in 1995–96. Even though PGR effectively shortened the plant height of spring wheat, the grain yield increased only in 1995. N yield of wheat grains was not increased. Response of fodder barley to PGR was insignificant or even negative in 1995. The data suggest that PGRs may decrease some N leaching at high N rates by improving N uptake by grain/seeds, if the yield is improved. The carryover study showed that in soils with no N fertilization, as well as in soils of high N rates, N uptake was higher than in soils with moderate N fertilization (60–90 kg ha-1 ), independent of PGRs. According to soil mineral N contents, N leaching risk is significant (15–35 kg ha-1 ) only after dry and warm late seasons. After a favourable season of high yields, the N rates did not significantly affect soil mineral N contents. ;


2010 ◽  
Vol 14 ◽  
pp. 59-65
Author(s):  
M.P. Rolston ◽  
B.L. Mccloy ◽  
R.J. Chynoweth

Results from 17 nitrogen (N) rate response trials using current best management including the plant growth regulator trinexapac-ethyl (Moddus) were used to predict optimum applied N rates for perennial ryegrass. The average optimum applied N rate was 145 kg/ha. A simple model using late winter soil mineral N (0-30 cm) and a total N requirement (mineral N + applied N) of 185 kg N/ha is recommended for growers to predict the applied spring N rate. Keywords: nitrogen, optimum rate, Lolium perenne, seed yield


1999 ◽  
Vol 47 (2) ◽  
pp. 123-133 ◽  
Author(s):  
A.P. Everaarts ◽  
P. De Willigen

The effects of the rate and the method of N application on yield and quality of broccoli cv. Emperor were studied during 3 seasons at Andijk and Lelystad, Netherlands. Different amounts of N fertilizer were applied broadcast or band placed at planting. Band placement of fertilizer increased the yield in 5 out of 8 experiments. Application of N resulted in larger heads. No relationship was found between soil mineral N at planting and optimum N application because of the narrow range of soil mineral N at planting. Split application had no or a negative effect on yield and therefore is not recommended. For optimum yields a rate of 270 kg N/ha is recommended, minus the mineral N in the 0-60 cm soil layer, band placed at planting. For broadcast application 275 kg N minus the soil mineral N is recommended at planting, but yields will be lower than with band placement of fertilizer.


1987 ◽  
Vol 27 (2) ◽  
pp. 295 ◽  
Author(s):  
WM Strong ◽  
RC Dalal ◽  
JE Cooper ◽  
PG Saffigna

Mineralisation and availability of residual fertiliser nitrogen (N) was studied in pots during December-October with and without the addition of straw (0-7.5 t/ha) on a Darling Downs black earth previously cropped with wheat. Soil (0-0.2 m) and straw were collected from field plots in which wheat was grown previously with supplementary irrigation and fertiliser N applied at 0, 100, 200, 300 or 400 kg/ha. At the end of the fallow, in June, there was a net increase in soil mineral N of between 0.7 and 11.1 mg/kg where fertiliser was applied to the preceding crop. The increase represented between 2 and 9% of the original N application and was larger with increasing N application rate and smaller with increasing rate of straw addition. Straw addition caused a substantial decrease in mineral N which was still evident in June and October, 162 and 305 days respectively following straw addition. Soil mineral N decreased linearly at the rate of 5 kg N/t of straw added up to 7.5 t/ha. The net effect of prior N applications on the quantity of N available to wheat plants was equivalent to 10-23% of the quantity of N applied to the preceding crop in the absence of straw and only 4% in the presence of straw. Residual effects of prior N applications on the quantity of N available for wheat plants was generally greater than was evident as soil mineral N in June. During crop growth, additional available N may have been released from the microbial soil N pool, especially where 200 or 400 kg/ha of N had been applied. Straw addition resulted in more microbial biomass throughout the fallow. The larger microbial N pool, however, contained less N than that immobilised due to straw addition. Thus, regardless of prior N application, less N was available to wheat plants in the presence than in the absence of straw of preceding wheat crops.


1998 ◽  
Vol 49 (3) ◽  
pp. 511 ◽  
Author(s):  
J. F. Angus ◽  
A. F. van Herwaarden ◽  
D. P. Heenan ◽  
R. A. Fischer ◽  
G. N. Howe

The relative importance of soil mineral nitrogen (N) available at the time of sowing ormineralised during the growing season was investigated for 6 crops of dryland wheat. The soil mineral N in the root-zone was sampled at sowing and maturity and the rate of net mineralisation in the top 10 cm was estimated by sequential sampling throughout the growing season, using an in situ method. Mineralisation during crop growth was modelled in relation to total soil N, ambient temperature, andsoil water content. Mineral N accumulated before sowing varied by a factor of 3 between the sites (from 67 to 195 kgN/ha), while the net mineralisation during crop growth varied by a factor of 2 (from 43 to 99 kgN/ha). The model indicated that 0·092% of total N was mineralised per day when temperature and water were not limiting, with rates decreasing for lower temperatures and soil water contents. When tested with independent data, the model predicted the mineralisation rate of soil growing continuous wheat crops but underestimated mineralisation of soil in a clover-wheat rotation. For crops yielding <3 t/ha, the supply of N was mostly from mineralisation during crop growth and the contribution from mineral N accumulated before sowing was relatively small. For crops yielding >4 t/ha, thesupply of N was mostly from N present in the soil at the time of sowing. The implication is that for crops to achieve their water-limited yield, they must be supplied with an amount of N greater than can be expected from mineralisation during the growing season, either from fertiliser or from mineral N accumulated earlier.


Sign in / Sign up

Export Citation Format

Share Document