Soil water regimes of reclaimed upland slopes in the oil sands region of Alberta

2012 ◽  
Vol 92 (1) ◽  
pp. 117-129 ◽  
Author(s):  
J. Leatherdale ◽  
D. S. Chanasyk ◽  
S. Quideau

Leatherdale, J., Chanasyk, D. S. and Quideau, S. 2012. Soil water regimes of reclaimed upland slopes in the oil sands region of Alberta. Can. J. Soil Sci. 92: 117–129. Large oil sands deposits in the Athabasca oil sands region of Alberta, Canada, are recovered through surface mining, creating a large-scale disturbance. Reclamation requires reconstruction of soil profiles to return the land to equivalent land capability and support the required end land use. Soil water regimes must be understood to allow for planting of appropriate vegetation species. This study quantified soil water regimes on reclaimed upland slopes of various reclamation prescriptions and determined whether soil water was affected by slope position. Slope position did not have a consistent effect on soil water. Spatial variability in soil characteristics and vegetation distribution likely had a greater influence on soil water than did slope position. The upper slope soil profiles had highly dynamic water regimes and a greater response to precipitation events than the lower soil profiles. Differences in water-holding capacity among sites were attributed to differences in clay, sand and organic matter content. Overwinter soil water recharge varied dramatically by site. Capillary barriers resulting from the textural discontinuities created by the reclamation prescriptions enhanced soil water retention within the profiles in at least two sites, and hence are desirable in reclamation scenarios, especially where reclamation material is coarse textured.

2021 ◽  
Author(s):  
Chengpeng Sun ◽  
Wenzhi Zhao ◽  
Hu Liu ◽  
Yongyong Zhang ◽  
Hong Zhou

<p>Textural layering of soil plays an important role in distributing and regulating resources for plants in many semiarid and arid landscapes. However, the spatial patterns of textural layering and the potential effects on soil hydrology and water regimes are poorly understood, especially in arid sandy soil environments like the desert-oasis ecotones in northwestern China. This work aims to determine the distribution of textural layered soils, analyze the effects of different soil-textural configurations on water regimes, and evaluate which factors affect soil water infiltration and retention characteristics in such a desert-oasis ecotone. We measured soil water content and mineral composition in 87 soil profiles distributed along 3 transects in the study area. Constant-head infiltration experiments were conducted at 9 of the soil profiles with different texture configurations. The results showed that textural layered soils were patchily but extensively distributed throughout the study area (with a combined surface area percentage of about 84%). Soil water content in the profiles ranged from 0.002 to 0.27 g/cm<sup>3</sup> during the investigation period, and significantly and positively correlated with the thickness of a medium-textured (silt or silt loam) layer (<em>P</em> < 0.001). The occurrence of a medium-textured layer increased field capacity (FC) and wilting point (WP), and decreased available water-holding capacity in soil profiles. Burial depth of the medium-textured layer had no clear effects on water retention properties, but the layer thickness tended to. In textural layered soils, smaller water infiltration rate and cumulative infiltration, and shallower depths of wetting fronts were detected, compared with homogeneous sand profiles. The thickness and burial depth of medium-textured layers had obvious effects on infiltration, but the magnitude of the effects depended on soil texture configuration. The revealed patterns of soil textural layering and the potential effects on water regimes may provide new insight into the sustainable management of rainfed vegetation in the desert-oasis ecotones of arid northwestern China and other regions with similar environments around the world.</p>


1988 ◽  
Vol 25 (4) ◽  
pp. 637-661 ◽  
Author(s):  
N. R. Morgenstern ◽  
A. E. Fair ◽  
E. C. McRoberts

Geotechnical engineering embraces soil mechanics, rock mechanics, and engineering geology. In practice it employs a wide variety of techniques ranging from site mapping and characterization to advanced theoretical analysis and performance monitoring. This paper draws on the development of the Alberta oil sands as a case study to illustrate the breadth of application of geotechnical engineering in large-scale resource developments.A description of the resource base and common extractive procedures used in the Alberta oil sands is given. The geological setting and geotechnical characterization of the Athabasca deposit are summarized. Detailed discussions are presented on geotechnical contributions to surface mining and slope stability, waste handling and tailings dam construction, and in situ recovery processes. The substantial opportunities for geotechnical engineering to contribute to both safe and economical operations in the extractive industries are emphasized. Key words: oil sands, mining, slope stability, monitoring, dredging, shear strength, tailings dam, overburden, liquefaction, pore pressures, geotechnical engineering.


2020 ◽  
Author(s):  
Martine van der Ploeg ◽  
Attila Nemes

<p>Soil hydro-physical properties —such as soil water retention, (un)saturated hydraulic conductivity, shrinkage and swelling, organic matter content, texture (particle distribution), structure (soil aggregation/pore structure)and bulk density— are used in many sub(surface) modeling applications. Reliable soil-hydrophysical properties are key to proper predictions with such models, yet the harmonization and standardization of these properties has not received much attention. Lack of harmonization and standardization may lead to heterogeneity in data as a result of differences in methodologies, rather than real landscape heterogeneity. A need and scope has been identified to better harmonize, innovate, and standardize methodologies regarding measuring soil hydraulic properties that form the information base of many derived products in support of EU policy. With this identified need in mind the Soil Program on Hydro-Physics via International Engagement (SOPHIE) was initiated in 2017. Besides developing new activities that may advise future measurements, we also explore historic data and metadata and mine its relevant contents. The European Hydro-pedological Data Inventory (EU-HYDI), the largest European database on measured soil hydrophysical properties, is – to date – rather under-explored in this sense, which served as motivation for this work.</p><p>From EU-HYDI we selected those records that were complete for soil texture, bulk density and organic matter, and fitted pedo-transfer functions separately for particular water retention points (at heads of 0, 2.5, 10, 100, 300, 1000, 3000, 15000 cm) and saturated hydraulic conductivity by multi-linear regression. We then subtracted the observed retention and hydraulic conductivity values from their estimated counterparts, and grouped the residuals by measurement methodologies. The results show that there can be significant differences between different methodologies and sample sizes used to obtain the water retention and hydraulic conductivity in the laboratory. The results thus show that the EU-data that may underlie large scale modelling may introduce errors in the forcing data that are attributed to a lack of harmonization and standardization in currently used measurement protocols.</p>


Water ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 896 ◽  
Author(s):  
Amir Haghverdi ◽  
Hasan Sabri Öztürk ◽  
Wolfgang Durner

A high-resolution soil water retention data set (81 repacked soil samples with 7729 observations) measured by the HYPROP system was used to develop and evaluate the performance of regression parametric pedotransfer functions (PTFs). A total of sixteen soil hydraulic models were evaluated including five unimodal water retention expressions of Brooks and Corey (BC model), Fredlund and Xing (FX model), Kosugi (K model), van Genuchten with four free parameters (VG model) and van Genuchten with five free parameters (VGm model). In addition, eleven bimodal, Peters–Durner–Iden (PDI) and bimodal-PDI variants of the original expressions were studied. Six modeling scenarios (S1 to S6) were examined with different combinations of the following input predictors: soil texture (percentages of sand, silt and clay), soil bulk density, organic matter content, percent of stable aggregates and saturated water content (θs). Although a majority of the model parameters showed low correlations with basic soil properties, most of the parametric PTFs provided reasonable water content estimations. The VGm parametric PTF with an RMSE of 0.034 cm3 cm−3 was the best PTF when all input predictors were considered. When averaged across modeling scenarios, the PDI variant of the K model with an RMSE of 0.045 cm3 cm−3 showed the highest performance. The best performance of all models occurred at S6 when θs was considered as an additional input predictor. The second-best performance for 11 out of the 16 models belonged to S1 with soil textural components as the only inputs. Our results do not recommend the development of parametric PTFs using bimodal variants because of their poor performance, which is attributed to their high number of free parameters.


2010 ◽  
Vol 90 (4) ◽  
pp. 637-647 ◽  
Author(s):  
S. Kessler ◽  
S.L. Barbour ◽  
K.C.J. van Rees ◽  
B.S. Dobchuk

Saline-sodic mine overburden (also referred to as spoil) removed to access the oil sands in the Athabasca region of Alberta is used as backfill in open pits and is also placed in large upland structures. These deposits are reclaimed with a soil cover to support re-vegetation. The chemistry within reconstructed soil profiles over saline-sodic overburden was investigated to determine the nature and spatial distribution of salts in the soils. Four reclamation treatments were compared: three layered covers (35, 50 and 100 cm thick) and one non-layered cover (100 cm thick). Salts have accumulated in the cover soils 15 to 20 cm above the overburden, raising the electrical conductivity in the lower part of the soil to between 4.5 and 6.0 dS m-1, which is beyond the acceptable value for vegetation growth. Salt redistribution was not related to slope position and the pattern of salt ingress suggests that diffusion has been the main mechanism driving salt migration into the soils during the initial 4-yr period following placement. Cover thickness did not affect the extent of salt migration, but the overall quality of the thinner covers (35 and 50 cm) for vegetation growth was compromised by the increased salinity levels.


2021 ◽  
Vol 9 ◽  
Author(s):  
Chengpeng Sun ◽  
Wenzhi Zhao ◽  
Hu Liu ◽  
Yongyong Zhang ◽  
Hong Zhou

Textural layering of soil plays an important role in distributing and regulating resources for plants in many semiarid and arid landscapes. However, the spatial patterns of textural layering and the potential effects on soil hydrology and water regimes are poorly understood, especially in arid sandy soil environments like the desert-oasis ecotones in northwestern China. This work aims to determine the distribution of textural layered soils, analyze the effects of different soil-textural configurations on water regimes, and evaluate which factors affect soil water infiltration and retention characteristics in such a desert-oasis ecotone. We measured soil water content and mineral composition in 87 soil profiles distributed along three transects in the study area. Constant-head infiltration experiments were conducted at 9 of the soil profiles with different texture configurations. The results showed that textural layered soils were patchily but extensively distributed throughout the study area (with a combined surface area percentage of about 84%). Soil water content in the profiles ranged from 0.002 to 0.27 g/cm3 during the investigation period, and significantly and positively correlated with the thickness of a medium-textured (silt or silt loam) layer (p < 0.001). The occurrence of a medium-textured layer increased field capacity and wilting point and decreased available water-holding capacity in soil profiles. Burial depth of the medium-textured layer had no clear effects on water retention properties, but the layer thickness tended to. In textural layered soils, smaller water infiltration rate and cumulative infiltration, and shallower depths of wetting fronts were detected, compared with homogeneous sand profiles. The thickness and burial depth of medium-textured layers had obvious effects on infiltration, but the magnitude of the effects depended on soil texture configuration. The revealed patterns of soil textural layering and the potential effects on water regimes may provide new insight into the sustainable management of rainfed vegetation in the desert-oasis ecotones of arid northwestern China and other regions with similar environments around the world.


2014 ◽  
Vol 2 ◽  
Author(s):  
Javier M Aznar ◽  
David Badía Villas ◽  
Rosa M Poch

Gypsisols, mainly distributed in arid lands, support a key economic activity and have attracted a lot of scientific interest due to their particular physical and chemical properties. For example, Gypsisols show a high erodibility, low fertility and a variable water holding capacity that can be attributed to different gypsum particle sizes. This study aims to describe some representative Gypsisols from the middle Ebro Basin. Five representative soil profiles (mainly Gypsisols by WRB) were selected and sampled at different positions along a hillside where soils where developed on gyprock. Furthemore, it links micromorphological properties with soil water retention. Soils have a dominant loamy texture, more rarely stoney. Gypsum is abundant in all soil profiles, ranging from 6 to 84% with minimum values in Ah horizons and maximum in By and Cy. The soils have a low level of salinity and a very low cation exchange capacity (CEC). The soil organic matter (SOM) is medium or abundant in the Ah horizons, otherwise it is low. Soil aggregate stability (SAS) is related significantly and positively with SOM and porosity, which is also positively related with moisture retention at field capacity and saturation humidity. However, there is no significant correlation between porosity and permanent wilting point (PWP). Soil water retention is dependant on the gypsum percentage and textural class. Low levels of gypsum have no influence on water retention, but high gypsum levels (> 60%) enhance the field capacity (FC) and decrease PWP, especially when the gypsum is microcrystalline. Gypsum levels between 40 and 60% also increase available water contents (AWC) due to a decrease in PWP. There is a positive and significant correlation between PWP and FC in Gypsisols, except for those which are loamy and have gypsum values over 40%. The higher available water capacity (AWC) than expected is related to microcrystalline gypsum, predominant in the studied soils. These high AWC values are counteracted by an increasingly irregular pore space not suitable for root growth. All these cited characteristics result in a low fertility, influenced by the weather and the human impact, which deforested the highest part of these mountains in the Middle Ages.


2018 ◽  
Vol 39 (1) ◽  
pp. 125-130 ◽  
Author(s):  
Łukasz Pardela ◽  
Tomasz Kowalczyk

AbstractThe objective of the study was to estimate the variation of soil water retention on the site of a historical bunker, an element of the former Wrocław Fortress in Poland. Measurements of soil moisture in the study area were taken in the period from March to September, 2017. Measurements of volumetric soil moisture were taken by means of a hand-held gauge, type FOM/mts with an FP/mts probe, operating on the basis of the reflectometric technique TDR. Soil moisture measurements realized in the vegetation period demonstrated that soil moisture resources in profiles situated in the section of the bunker varied within the range of 37–135 mm in the layer of 50 cm, and 66–203 mm in the layer of 100 cm. The maximum differences of the average value of soil moisture of the soil profiles studied in the period covered by the measurements were 31 mm and 56 mm, respectively. This indicates a significant differentiation of the retention properties of soils used for the construction of individual shelter areas.


2007 ◽  
Vol 64 (4) ◽  
pp. 344-354 ◽  
Author(s):  
Carlos Eduardo Pinto Juhász ◽  
Miguel Cooper ◽  
Patrícia Ribeiro Cursi ◽  
André Oppitz Ketzer ◽  
Raul Shiso Toma

The limiting factors of the Brazilian savanna physical environment have been largely discussed. Soil morphology is fundamental to understand the behavior of soil water flow, soil physical properties and soil-landscape relationships. The aim of this study is to relate soil micro and macromorphologic attributes to soil water retention on a toposequence under native savanna woodland (cerradão) in a permanent plot of 320 m <FONT FACE=Symbol>´</FONT> 320 m installed in Assis, SP, Brazil. Samples collected at five points within the toposequence were used to determine the soil macroporosity by means of image analyses, estimated total porosity, chemical analysis, particle size distribution analysis and soil water retention. From the summit down to the footslope, the soils were classified as Rhodic Haplustox, Typic Haplustox and Epiaquic Haplustult, presenting a gradual color transition and a sandy loam texture. In the surface horizons, the higher organic matter content and the high total macroporosity determined a lower soil bulk density and lower water retention. In the Oxisols, the high soil macroporosity results from the packing of microaggregates in the oxic horizon. In the Ultisol, the lower total porosity in the deeper horizons resulted in a higher water retention and an imperfect water drainage. The water retention conditions on the slope influenced the morphological differences in soil color and structure. The low water retention on the surface and oxic horizons, conditioned by the high total macroporosity, is one of the factors that may define the vegetal pattern of the savanna woodland within the permanent plot.


Sign in / Sign up

Export Citation Format

Share Document