Geotechnical engineering beyond soil mechanics—a case study

1988 ◽  
Vol 25 (4) ◽  
pp. 637-661 ◽  
Author(s):  
N. R. Morgenstern ◽  
A. E. Fair ◽  
E. C. McRoberts

Geotechnical engineering embraces soil mechanics, rock mechanics, and engineering geology. In practice it employs a wide variety of techniques ranging from site mapping and characterization to advanced theoretical analysis and performance monitoring. This paper draws on the development of the Alberta oil sands as a case study to illustrate the breadth of application of geotechnical engineering in large-scale resource developments.A description of the resource base and common extractive procedures used in the Alberta oil sands is given. The geological setting and geotechnical characterization of the Athabasca deposit are summarized. Detailed discussions are presented on geotechnical contributions to surface mining and slope stability, waste handling and tailings dam construction, and in situ recovery processes. The substantial opportunities for geotechnical engineering to contribute to both safe and economical operations in the extractive industries are emphasized. Key words: oil sands, mining, slope stability, monitoring, dredging, shear strength, tailings dam, overburden, liquefaction, pore pressures, geotechnical engineering.

2020 ◽  
Vol 200 ◽  
pp. 02006
Author(s):  
Shofwatul Fadilah ◽  
Djoko Luknanto

Rainfall is the most common cause of landslides in Indonesia. On March 17, 2019, a landslide occurred in the Imogiri Cemetery, Mataram Royal Kings Graveyard Complex. It was expected to have been triggered by heavy rainfall of 148 mm d–1 intensity. This research aims to determine the effect of rainfall on the slope stability on the landslide at the Imogiri Cemetery. The study was carried out by slope stability modelling using Geostudio software. Rainfall information and soil characteristics data obtained from testing soil samples in the Soil Mechanics Laboratory, Civil and Environmental Engineering, Universitas Gadjah Mada, were used as input on the software. The output of the analysis is the factor of safety (FS) value, defined as the ratio of the shear strength to the shear stress. Without the rains, the FS value is about 2.44, which means the slope stability is stable. After heavy rainfall, the FS value decreased to 1.209 at the end of the simulation, which indicates happen the slope instability. Based on the simulation, the FS value depends on the volume of water content and hydraulic conductivity of the soil. Result of this study shows that heavy rainfall can trigger slope instability in the Imogiri Cemetery.


2021 ◽  
Vol 13 (21) ◽  
pp. 4258
Author(s):  
Xiaoru Dai ◽  
Barbara Schneider-Muntau ◽  
Wolfgang Fellin ◽  
Andrea Franco ◽  
Bernhard Gems

On 17 October 2015, a large-scale subaerial landslide occurred in Taan Fiord, Alaska, which released about 50 Mm3 of rock. This entered the water body and triggered a tsunami with a runup of up to 193 m. This paper aims to simulate the possible formation of a weak layer in this mountainous slope until collapse, and to analyze the possible triggering factors of this landslide event from a geotechnical engineering perspective so that a deeper understanding of this large landslide event can be gained. We analyzed different remote-sensing datasets to characterize the evolution of the coastal landslide process. Based on the acquired remote-sensing data, Digital Elevation Models were derived, on which we employed a 2D limit equilibrium method in this study to calculate the safety factor and compare the location of the associated sliding surface with the most probable actual location at which this landslide occurred. The calculation results reflect the development process of this slope collapse. In this case study, past earthquakes, rainfall before this landslide event, and glacial melting at the toe may have influenced the stability of this slope. The glacial retreat is likely to be the most significant direct triggering factor for this slope failure. This research work illustrates the applicability of multi-temporal remote sensing data of slope morphology to constrain preliminary slope stability analyses, aiming to investigate large-scale landslide processes. This interdisciplinary approach confirms the effectiveness of the combination of aerial data acquisition and traditional slope stability analyses. This case study also demonstrates the significance of a climate change for landslide hazard assessment, and that the interaction of natural hazards in terms of multi-hazards cannot be ignored.


2016 ◽  
Vol 8 (1) ◽  
Author(s):  
Chrysanthos Steiakakis ◽  
Zacharias Agioutantis ◽  
Evangelia Apostolou ◽  
Georgia Papavgeri ◽  
Achilles Tripolitsiotis

AbstractThe geotechnical challenges for safe slope design in large scale surface mining operations are enormous. Sometimes one degree of slope inclination can significantly reduce the overburden to ore ratio and therefore dramatically improve the economics of the operation, while large scale slope failures may have a significant impact on human lives. Furthermore, adverse weather conditions, such as high precipitation rates, may unfavorably affect the already delicate balance between operations and safety. Geotechnical, weather and production parameters should be systematically monitored and evaluated in order to safely operate such pits. Appropriate data management, processing and storage are critical to ensure timely and informed decisions.This paper presents an integrated data management system which was developed over a number of years as well as the advantages through a specific application. The presented case study illustrates how the high production slopes of a mine that exceed depths of 100–120 m were successfully mined with an average displacement rate of 10– 20 mm/day, approaching an almost slow to moderate landslide velocity. Monitoring data of the past four years are included in the database and can be analyzed to produce valuable results. Time-series data correlations of movements, precipitation records, etc. are evaluated and presented in this case study. The results can be used to successfully manage mine operations and ensure the safety of the mine and the workforce.


2012 ◽  
Vol 92 (1) ◽  
pp. 117-129 ◽  
Author(s):  
J. Leatherdale ◽  
D. S. Chanasyk ◽  
S. Quideau

Leatherdale, J., Chanasyk, D. S. and Quideau, S. 2012. Soil water regimes of reclaimed upland slopes in the oil sands region of Alberta. Can. J. Soil Sci. 92: 117–129. Large oil sands deposits in the Athabasca oil sands region of Alberta, Canada, are recovered through surface mining, creating a large-scale disturbance. Reclamation requires reconstruction of soil profiles to return the land to equivalent land capability and support the required end land use. Soil water regimes must be understood to allow for planting of appropriate vegetation species. This study quantified soil water regimes on reclaimed upland slopes of various reclamation prescriptions and determined whether soil water was affected by slope position. Slope position did not have a consistent effect on soil water. Spatial variability in soil characteristics and vegetation distribution likely had a greater influence on soil water than did slope position. The upper slope soil profiles had highly dynamic water regimes and a greater response to precipitation events than the lower soil profiles. Differences in water-holding capacity among sites were attributed to differences in clay, sand and organic matter content. Overwinter soil water recharge varied dramatically by site. Capillary barriers resulting from the textural discontinuities created by the reclamation prescriptions enhanced soil water retention within the profiles in at least two sites, and hence are desirable in reclamation scenarios, especially where reclamation material is coarse textured.


2017 ◽  
Vol 114 (19) ◽  
pp. E3756-E3765 ◽  
Author(s):  
Shao-Meng Li ◽  
Amy Leithead ◽  
Samar G. Moussa ◽  
John Liggio ◽  
Michael D. Moran ◽  
...  

Large-scale oil production from oil sands deposits in Alberta, Canada has raised concerns about environmental impacts, such as the magnitude of air pollution emissions. This paper reports compound emission rates (E) for 69–89 nonbiogenic volatile organic compounds (VOCs) for each of four surface mining facilities, determined with a top-down approach using aircraft measurements in the summer of 2013. The aggregate emission rate (aE) of the nonbiogenic VOCs ranged from 50 ± 14 to 70 ± 22 t/d depending on the facility. In comparison, equivalent VOC emission rates reported to the Canadian National Pollutant Release Inventory (NPRI) using accepted estimation methods were lower than the aE values by factors of 2.0 ± 0.6, 3.1 ± 1.1, 4.5 ± 1.5, and 4.1 ± 1.6 for the four facilities, indicating underestimation in the reported VOC emissions. For 11 of the combined 93 VOC species reported by all four facilities, the reported emission rate and E were similar; but for the other 82 species, the reported emission rate was lower than E. The median ratio of E to that reported for all species by a facility ranged from 4.5 to 375 depending on the facility. Moreover, between 9 and 53 VOCs, for which there are existing reporting requirements to the NPRI, were not included in the facility emission reports. The comparisons between the emission reports and measurement-based emission rates indicate that improvements to VOC emission estimation methods would enhance the accuracy and completeness of emission estimates and their applicability to environmental impact assessments of oil sands developments.


1996 ◽  
Vol 5 (1) ◽  
pp. 23-32 ◽  
Author(s):  
Chris Halpin ◽  
Barbara Herrmann ◽  
Margaret Whearty

The family described in this article provides an unusual opportunity to relate findings from genetic, histological, electrophysiological, psychophysical, and rehabilitative investigation. Although the total number evaluated is large (49), the known, living affected population is smaller (14), and these are spread from age 20 to age 59. As a result, the findings described above are those of a large-scale case study. Clearly, more data will be available through longitudinal study of the individuals documented in the course of this investigation but, given the slow nature of the progression in this disease, such studies will be undertaken after an interval of several years. The general picture presented to the audiologist who must rehabilitate these cases is that of a progressive cochlear degeneration that affects only thresholds at first, and then rapidly diminishes speech intelligibility. The expected result is that, after normal language development, the patient may accept hearing aids well, encouraged by the support of the family. Performance and satisfaction with the hearing aids is good, until the onset of the speech intelligibility loss, at which time the patient will encounter serious difficulties and may reject hearing aids as unhelpful. As the histological and electrophysiological results indicate, however, the eighth nerve remains viable, especially in the younger affected members, and success with cochlear implantation may be expected. Audiologic counseling efforts are aided by the presence of role models and support from the other affected members of the family. Speech-language pathology services were not considered important by the members of this family since their speech production developed normally and has remained very good. Self-correction of speech was supported by hearing aids and cochlear implants (Case 5’s speech production was documented in Perkell, Lane, Svirsky, & Webster, 1992). These patients received genetic counseling and, due to the high penetrance of the disease, exhibited serious concerns regarding future generations and the hope of a cure.


2008 ◽  
Author(s):  
D. L. McMullin ◽  
A. R. Jacobsen ◽  
D. C. Carvan ◽  
R. J. Gardner ◽  
J. A. Goegan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document