Comparative analysis of root transcriptome profiles between drought-tolerant and susceptible wheat genotypes in response to water stress

Plant Science ◽  
2018 ◽  
Vol 272 ◽  
pp. 276-293 ◽  
Author(s):  
Ling Hu ◽  
Yan Xie ◽  
Shoujin Fan ◽  
Zongshuai Wang ◽  
Fahong Wang ◽  
...  
2016 ◽  
Vol 4 (2) ◽  
pp. 206-214 ◽  
Author(s):  
Zaid Chachar ◽  
N. A. Chachar ◽  
Q.I. Chachar ◽  
S.M Mujtaba ◽  
G.A Chachar ◽  
...  

Climate change is emerging phenomena and causing frequent drought which lead to scaricity of water, which ultimately nagetively affecting wheat (Triticumaestivum L.) yield all around the world. The aim of this study was to explore the potential deought tolerant wheat genotypes for candidate genes exploration. This study was conducted during the year 2014-2015 at Plant Physiology Division, Nuclear Institute of Agriculture (NIA) Tandojam. The six wheat genotypes (cv. MT-1/13, MT-2/13, MT-3/13, MT-4/13 Chakwal-86 and Khirman) were investigated for their response at germination and seedling stage under different water stress treatments (0, -0.5, -0.75 and -1.0 MPa) in controlled conditions. The results of experiments with reference to genotypes revealed that genotype Chakwal-86 shows maximum seed germination (82.58 %), while the genotype Khirman shows maximum shoot length  (7.23 cm), root length  (15.1 cm), shoot fresh wt. (5.85 g 10-1shoots), root fresh wt.  (3.45 g 10-1roots), shoot dry wt. (1.33 g 10-1shoots), root dry wt. (0.69 g 10-1roots). Among the genotypes tested Khirman and MT-4/13 are the tolerant genotypes had the potential to perform better under drought conditions, whereas  MT-4/13 and Chakwal-86 were moderate tolerant under water stress conditions. Moreover, the genotypes i.e. MT-1/13 and MT-2/13 are the sensitive genotypes under drought environment. It is concluded from present in-vitro studies that osmotic stress significantly reduced the seed germination shoot/root length fresh and dry weight in all six wheat genotypes. The maximum reduction was found at higher osmotic stress induced by PEG-6000 (-1.0 MPa) significantly.


2016 ◽  
Vol 143 ◽  
pp. 209-226 ◽  
Author(s):  
Ramesh Katam ◽  
Katsumi Sakata ◽  
Prashanth Suravajhala ◽  
Tibor Pechan ◽  
Devaiah M. Kambiranda ◽  
...  

2012 ◽  
Vol 92 (3) ◽  
pp. 501-507 ◽  
Author(s):  
Fengbin Song ◽  
Xiying Han ◽  
Xiancan Zhu ◽  
Stephen J. Herbert

Song, F., Han, X., Zhu, X. and Herbert, S. J. 2012. Response to water stress of soil enzymes and root exudates from drought and non-drought tolerant corn hybrids at different growth stages. Can. J. Soil Sci 92: 501–507. Drought tolerant corn hybrids (Zea mays L.) are an excellent model to evaluate the effect of water stress on rhizosphere functions. The purpose of this study was to investigate the influences of water stress on soil pH, enzyme activities, and root exudates from corn. Two corn hybrids, Baidan 9 (drought tolerant) and Baidan 31 (non-drought tolerant) were grown in soil-filled pots for pH and enzyme assays and in hydroponics culture for root exudate analysis. Water stress was imposed at four growth stages: seedling, elongation, tasseling and grain-filling stages. Soil pH was lower in the rhizosphere than bulk soil, but was not affected by water deficiency. Water stress increased protease activity at the seedling stage, but reduced its activities at other stages compared to the control. A significant positive correlation was observed between pH and alkaline phosphatase activity under water stress. Compared to Baidan 31, the rhizosphere of drought-tolerant Baidan 9 had greater protease and catalase activities at all growth stages, greater alkaline phosphatase, lower acid phosphatase and greater invertase activities at elongation, tasseling and filling stages. Osmotic stress increased the organic acid concentration (malic, lactic, acetic, succinic, citric and maleic acids) in root exudates of Baidan 9 and Baidan 31; as well there was a greater fumaric acid concentration in Baidan 31 under osmotic stress than without stress. The increased soil enzyme activities and organic acids exuded from the rhizosphere of plants under water stress might contribute to drought tolerance in corn hybrids.


1992 ◽  
Vol 15 (1) ◽  
pp. 49-59 ◽  
Author(s):  
R. D. EVANS ◽  
R. A. BLACK ◽  
W. H. LOESCHER ◽  
R. J. FELLOWS

2021 ◽  
Vol 12 ◽  
Author(s):  
Charlotte Jones ◽  
Jose De Vega ◽  
Margaret Worthington ◽  
Ann Thomas ◽  
Dagmara Gasior ◽  
...  

Brachiaria (Trin.) Griseb. (syn. Urochloa P. Beauv.) is a C4 grass genus belonging to the Panicoideae. Native to Africa, these grasses are now widely grown as forages in tropical areas worldwide and are the subject of intensive breeding, particularly in South America. Tolerance to abiotic stresses such as aluminum and drought are major breeding objectives. In this study, we present the transcriptomic profiling of leaves and roots of three Brachiaria interspecific hybrid genotypes with the onset of water stress, Br12/3659-17 (gt-17), Br12/2360-9 (gt-9), and Br12/3868-18 (gt-18), previously characterized as having good, intermediate and poor tolerance to drought, respectively, in germplasm evaluation programs. RNA was extracted from leaf and root tissue of plants at estimated growing medium water contents (EWC) of 35, 15, and 5%. Differentially expressed genes (DEGs) were compared between different EWCs, 35/15, 15/5, and 35/5 using DESeq2. Overall, the proportions of DEGs enriched in all three genotypes varied in a genotype-dependent manner in relation to EWC comparison, with intermediate and sensitive gt-9 and gt-18 being more similar to each other than to drought tolerant gt-17. More specifically, GO terms relating to carbohydrate and cell wall metabolism in the leaves were enriched by up-regulated DEGs in gt-9 and gt-18, but by down-regulated DEGs in gt-17. Across all genotypes, analysis of DEG enzyme activities indicated an excess of down-regulated putative apoplastic peroxidases in the roots as water stress increased. This suggests that changes in root cell-wall architecture may be an important component of the response to water stress in Brachiaria.


PLoS ONE ◽  
2012 ◽  
Vol 7 (6) ◽  
pp. e38554 ◽  
Author(s):  
Sonia Silvente ◽  
Anatoly P. Sobolev ◽  
Miguel Lara

Sign in / Sign up

Export Citation Format

Share Document