Soil structure and crop yield over a 5-year period following subsoiling Solonetzic and Chernozemic soils in Saskatchewan

1993 ◽  
Vol 73 (1) ◽  
pp. 81-91 ◽  
Author(s):  
M. C. J. Grevers ◽  
E. de Jong

The effect of subsoiling of Solonetzic and of Chernozemic soils was studied over a 5-yr period under dryland conditions and under irrigation, involving 11 farm sites, and 2 soil zones. Subsoiling reduced soil density for up to 3 yr on most of the Solonetzic soils and on one of the Chernozemic soils. Overwinter soil-water recharge in subsoiled Solonetzic soils was increased for up to 3 yr, but not in subsoiled Chernozemic soils. Under irrigated conditions, subsoiling reduced soil salinity and sodicity at one site; however, under dryland conditions soil salinity and sodicity levels remained unaltered. Crop emergence on one of the Solonetzic soils was decreased in the first year after subsoiling because of poor seedbed conditions. Subsoiling increased crop production on Solonetzic soils in the 1st, 2nd, 3rd and in the 4th years, and at one site in the 5th year. Subsoiling did not affect crop production on Chernozemic soils. Increased crop production resulted from increased soil water depletion with depth, and also from greater crop water-use efficiency. Soil loosening by subsoiling, as indicated by decreased soil bulk density of the B horizon lasted up to 3 yr, during which the largest yield increases were measured. The results suggest that subsoiling may have to be repeated every 5 yr or more. Key words: Subsoiling, amelioration, soil water, crop growth

HortScience ◽  
2021 ◽  
pp. 1-9
Author(s):  
Ved Parkash ◽  
Sukhbir Singh ◽  
Manpreet Singh ◽  
Sanjit K. Deb ◽  
Glen L. Ritchie ◽  
...  

Water scarcity is increasing in the world, which is limiting crop production, especially in water-limited areas such as Southern High Plains of the United States. There is a need to adopt the irrigation management practices that can help to conserve water and sustain crop production in such water-limited areas. A 2-year field study was conducted during the summers of 2019 and 2020 to evaluate the effect of deficit irrigation levels and cultivars on root distribution pattern, soil water depletion, and water use efficiency (WUE) of cucumber (Cucumis sativus). The experiment was conducted in a split-plot design with four irrigation levels [100%, 80%, 60%, and 40% crop evapotranspiration (ETc)] as main plot factor and two cultivars (Poinsett 76 and Marketmore 76) as subplot factor with three replications. Results showed that root length density (RLD) was unaffected by the irrigation levels in 2019. In 2020, the RLD was comparable between 100% and 80% ETc, and it was significantly higher in 100% ETc than both 60% Eand 40% ETc. Root surface area density (RSAD) was not significantly different between 100% and 80% ETc, and it was significantly lower in both 60% and 40% ETc than 100% ETc in both years. Soil water depletion was the highest in 40% ETc followed by 60% and 80% ETc, and it was least in 100% ETc in both years. Evapotranspiration (ET) was the highest in 100% ETc followed by 80%, 60%, and 40% ETc. The WUE was not statistically different among the irrigation treatments. However, numerically, WUE was observed in the following order: 80% ETc > 100% ETc > 60% ETc > 40% ETc. The RLD, RSAD, soil water depletion, and ET were not significantly different between ‘Poinsett 76’ and ‘Marketmore 76’. However, fruit yield was significantly higher in ‘Poinsett 76’ than ‘Marketmore 76’, which resulted in higher WUE in Poinsett 76. It can be concluded that 80% ETc and Poinsett 76 cultivar can be adopted for higher crop water productivity and successful cucumber production in SHP.


2012 ◽  
Vol 59 (No. 1) ◽  
pp. 1-7 ◽  
Author(s):  
B. Wang ◽  
W. Liu ◽  
Q. Xue ◽  
T. Dang ◽  
C. Gao ◽  
...  

The objective of this study was to investigate the effect of nitrogen (N) management on soil water recharge, available soil water at sowing (ASWS), soil water depletion, and wheat (Triticum aestivum L.) yield and water use efficiency (WUE) after long-term fertilization. We collected data from 2 experiments in 2 growing seasons. Treatments varied from no fertilization (CK), single N or phosphorus (P), N and P (NP), to NP plus manure (NPM). Comparing to CK and single N or P treatments, NP and NPM reduced rainfall infiltration depth by 20–60 cm, increased water recharge by 16–21 mm, and decreased ASWS by 89–133 mm in 0–300 cm profile. However, crop yield and WUE continuously increased in NP and NPM treatments after 22 years of fertilization. Yield ranged from 3458 to 3782 kg/ha in NP or NPM but was 1246–1531 kg/ha in CK and single N or P. WUE in CK and single N or P treatments was < 6 kg/ha/mm but increased to 12.1 kg/ha/mm in a NP treatment. The NP and NPM fertilization provided benefits for increased yield and WUE but resulted in lower ASWS. Increasing ASWS may be important for sustainable yield after long-term fertilization.


Agronomy ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1315
Author(s):  
Xun Bo Zhou ◽  
Guo Yun Wang ◽  
Li Yang ◽  
Hai Yan Wu

Low water availability coupled with poor planting method has posed a great challenge to winter wheat (Triticum aestivum L.) productivity. To improve productivity and water use efficiency (WUE) under deficit irrigation, an effective water-saving technology that is characterized by three planting modes has been developed (uniform with 30-cm row spacing (U), double-double row spacing of 5 cm (DD), and furrow-ridge row spacing of alternated 20 cm and 40 cm (F)) combined with three irrigation regimes (50 mm water each at growth stage 34 (GS34) and GS48 (W1), and 100 mm water at GS48 (W2), or 100 mm each water at GS34 and GS48 (W3)). Results showed that DD increased yield by 9.7% and WUE by 12.6% due to higher soil water status and less soil water depletion and evapotranspiration compared with U. Although the soil water status, soil water depletion, evapotranspiration, and yield increased with increasing irrigation amount, more soil water depletion and evapotranspiration resulted in low WUE. The deficit irrigation was beneficial for improving WUE as W1 had significantly increased yield by 5.4% and WUE by 7.1% compared with W2. Yield and evapotranspiration showed a quadratic dynamic equation indicating that yield increased with increasing evapotranspiration. Considering WUE and relatively higher yield under deficit water, W1 combined with DD is suggested to be a good management strategy to be applied in winter wheat of water-scarce regions.


1990 ◽  
Vol 70 (2) ◽  
pp. 125-136 ◽  
Author(s):  
C. CHANG ◽  
T. G. SOMMERFELDT ◽  
T. ENTZ ◽  
D. R. STALKER

Nineteen years of soil moisture content data at Lethbridge and two locations near Turin (Turin 1 and Turin 2) in southern Alberta were examined to evaluate the efficiency of follow for conserving moisture, and to calculate the long-term mean amount of water recharge during growing and nongrowing seasons under a fallow-cereal, 2-yr rotation and a continuous cropping system. Soil samples were taken annually from 1969 to 1987 to a depth of 120 cm in 30-cm intervals in the spring (early May) and fall (late September). A method for testing differences of means between nonstandard data using localized uncertainty associated with sliding polynomial smoothing was used to test for differences in the soil moisture contents due to cultural practices. The available soil moisture content of the soil to 120-cm depth was at least 50% of available water-holding capacity (AWHC) of the profile for the fallow treatment at Lethbridge and Turin 2, and, except in some years, at Turin 1. At seeding time, there was an average of 69 mm more available water (AW) in the fallow field than in the continuous cropping field at Lethbridge and 30, 35 and 27 mm more AW in the fallow field than in the fresh stubble field of a fallow-cereal, 2-yr rotation for Lethbridge, Turin 1 and Turin 2, respectively. The overall mean precipitation conserved as soil moisture for the fallow-cereal rotation practice was 23, 29 and 23% for Lethbridge, Turin 1 and Turin 2, respectively. The significantly higher soil water content at the 90- to 120-cm depth for the fallow field than for other fields during various periods of time indicates that the soil water recharge from precipitation might be deeper in the fallow field than in continuous cropping and fresh stubble of fallow-cereal rotation fields. The deeper soil water recharge could increase the available soil moisture for crop production and it could also contribute to ground water recharge. Key words: Soil water, available water content, continuous cropping, summerfallow


2018 ◽  
Vol 11 (2) ◽  
pp. 139-146 ◽  
Author(s):  
Yi-ben Cheng ◽  
Hong-bin Zhan ◽  
Wen-bin Yang ◽  
Fang Bao

2010 ◽  
Vol 97 (7) ◽  
pp. 1063-1069 ◽  
Author(s):  
Patricio Grassini ◽  
Jinsheng You ◽  
Kenneth G. Hubbard ◽  
Kenneth G. Cassman

1995 ◽  
Vol 52 (1) ◽  
pp. 43-49 ◽  
Author(s):  
K. Reichardt ◽  
L.R. Angelocci ◽  
O.O.S. Bacchi ◽  
J.E. Pilotto

Daily rainfall variability at a local scale (1,000 ha) was studied at Piracicaba, SP, Brazil, for the period of one year (1993-1994), in order to better understand the process of soil water recharge. Coefficients of variation of daily data for ten observation points varied from 2.2 to 169.3% and the variability was independent of rain type, i.e. whether convective, frontal or of other origin. Data were not related to separation distances between observation points and it is concluded that one observation point does not represent areas as far as 1,000 to 2,500 m apart, for daily, monthly or even quarterly averages. Yearly totals for the ten observation points presented a coefficient of variation as low as 3.06%, indicating that all points can replace each other in annual terms.


Sign in / Sign up

Export Citation Format

Share Document