The effects of tillage systems and crop rotations on soil chemical properties of a Black Chernozemic soil

1994 ◽  
Vol 74 (3) ◽  
pp. 301-306 ◽  
Author(s):  
C. A. Grant ◽  
G. P. Lafond

The effects of zero (ZT), minimum (MT) and conventional tillage (CT) systems and three 4-yr crop rotations on soil total C and N, mineralizable N, NO3-N, P, K and SO4-S accumulation and distribution in the soil profile were determined after one 4-yr cycle of crop production on Black Chernozemic Indian Head heavy clay soil. The distributions of available P and K in the profile were not affected by tillage or rotation. Total C and N in the 0–5 cm depth was higher in the reduced tillage systems than in CT, but differences in the 5–10 cm and 10–15 cm depths were not significant. Nitrate concentration was higher in the 15–30 cm and 30–60 cm depths under CT than under reduced tillage. Inclusion of fallow increased accumulation of NO3-N in the deeper soil depths, while inclusion of winter wheat in the rotation reduced deep movement of NO3-N. Nitrate-nitrogen accumulation after field pea production was comparable to that after winter wheat, but a greater proportion of the NO3-N was present near the soil surface after winter wheat, reducing the potential for leaching below the rooting zone. Potential for movement of NO3-N below the rooting zone may be increased by fallow and decreased by production of winter wheat and by reduced tillage systems. Key words: Tillage, rotations, nitrate, sulphate

Author(s):  
V. D. Orekhivskyi ◽  
◽  
A. I. Kryvenko ◽  
S. V. Pochkolina ◽  
◽  
...  

The article investigates the influence of the application of different systems of basic tillage on the quality of winter wheat grain in short crop rotations of the Southern Steppe of Ukraine. It is established that the grain quality of winter wheat in the Southern Steppe of Ukraine is mainly determined by the genetic characteristics of the variety, but also largely depends on the conditions and technologies of cultivation. In winter wheat grain, which is used for food purposes, reserve proteins are important, which in winter wheat determine the baking properties of flour. In drought conditions, when the yield of winter wheat decreases, the protein content in its grain tends to increase. In wet years, on the contrary, there is a reverse pattern. According to experimental studies, wheat varieties have a negative correlation between grain protein content and yield. It is established that during 2016–2020 research shows almost the same pattern of action of different predecessors and systems of basic tillage on the formation of grain quality of winter wheat in arid conditions. It was found that, on average, according to all variants of research, only with the use of the system of tillage-free tillage received grain of winter wheat with a protein content of 12,5%, which met the requirements of the 2nd class. It is recorded that on average over five years of research on all tillage systems, grain of winter wheat with gluten content was obtained, the quality of which corresponded to the 3rd class. Different tillage systems caused a slight impact on the gluten content, which ranged from 20,6% to 21,1%. It is determined that the precursors have a certain effect on the protein content in the grain of winter wheat. The analysis of qualitative indicators showed that on average in five years of research, when growing winter wheat after a pair of black and a pair of green wheat with winter vetch, grain was formed, which in terms of protein content corresponded to the 2nd quality class. More protein was accumulated in winter wheat grain after a pair of black, which was 12,9%. After peas for grain, as well as a pair of green with a mixture of white mustard and peas, received a grain of winter wheat, which was the 3rd quality class. It was found that on average in five years of research, all variants of winter wheat were grown with gluten content, which met the requirements of the 3rd class. Black vapor and green vapor with winter veneer caused the accumulation of gluten at almost the same level with a small increase in the version with winter vetch up to 21,8%. The lowest level of gluten was obtained in the grain of winter wheat after peas per grain, which was 19,7%. In all variants of the experiment, sidereal steam with winter tillage and the use of tillage-free tillage had the best effect on the growth of winter wheat grain quality indicators. The grain of winter wheat was mainly formed in terms of quality, which allows it to be used for food purposes – mainly in the flour-milling and baking industries, as well as for export. It is established that it is important to further study the quality of winter wheat grain and other cereals in short crop rotations of the arid Southern Steppe of Ukraine, especially in climate change.


Agronomy ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 182 ◽  
Author(s):  
Ruth-Maria Hausherr Lüder ◽  
Ruijun Qin ◽  
Walter Richner ◽  
Peter Stamp ◽  
Bernhard Streit ◽  
...  

To investigate how tillage intensity modifies the small-scale spatial variability of soil and winter wheat parameters, field trials were conducted on small plots (12 m × 35 m) in three temperate environments in the Swiss midlands: Zollikofen in 1999 (loamy silt soil; Gleyic Cambisol) and Schafisheim in 1999 and in 2000 (sandy loam soil; Orthic Luvisol). Total soil nitrogen (Ntot), total carbon (Ctot) and pH were assessed after harvest. A regular nested grid pattern was applied with sampling intervals of 3 m and 1 m at 0–30 cm on a total of nine no-tillage (NT) and nine conventional tillage (CT) plots. At each grid point, wheat biomass, grain yield, N uptake and grain protein concentration were recorded. Small-scale structural variance of soil Ntot, Ctot and pH was slightly larger in NT than in CT in the topsoil in the tillage direction of the field. Wheat traits had a slightly greater small-scale variability in NT than in CT. Spatial relationships between soil and crop parameters were rather weak but more pronounced in NT. Our results suggest limited potential for variable-rate application of N fertilizer and lime for NT soils. Moderate nugget variances in soil parameters were usually higher in CT than in NT, suggesting that differences in spatial patterns between the tillage systems might occur at even smaller scales.


2016 ◽  
pp. 95-99
Author(s):  
Géza Tuba ◽  
Györgyi Kovács ◽  
József Zsembeli

The effect of reduced and conventional tillage on soil compaction, soil moisture status and carbon-dioxide emission of the soil was studied on a meadow chernozem soil with high clay content in the soil cultivation experiment started in 1997 at Karcag Research Institute. Our investigations were done on stubbles after the harvest of winter wheat and winter peas after the very droughty vegetation period of 2014/2015. We established that the soil in both tillage systems was dry and compacted and the CO2-emission was very low. The positive effects of reduced tillage could be figured out only in the soil layer of 40–60 cm in the given weather conditions of that period.


Soil Research ◽  
2001 ◽  
Vol 39 (6) ◽  
pp. 1307 ◽  
Author(s):  
F. P. Valzano ◽  
B. W. Murphy ◽  
R. S. B. Greene

In 1994 a long-term field trial with 9 lime–gypsum combinations and 2 tillage treatments (reduced tillage and direct drill) was established on a sodic red-brown earth soil [surface pH(water) 6.5] at a property near Peak Hill, NSW, Australia. The lime-gypsum treatments were: L0G0 (lime 0 t/ha, gypsum 0 t/ha), L0G1, L0G2.5, L0G5, L1G0, L2.5G0, L5G0, L1G1, and L2.5G1. After 3 years, higher rates of lime and gypsum or their combinations significantly (P < 0.01) increased exchangeable and soluble calcium and decreased exchangeable and soluble sodium in the 0–100 mm layer of the soil. Gypsum was found to decrease the total soluble cation concentration (TCC) in some instances, while lime maintained TCC at 1995 levels. Soil pH was significantly higher on all lime plots and electrical conductivity was slightly higher on plots treated with lime than on control plots. Organic carbon levels were significantly higher in plots with gypsum and high levels of the lime–gypsum combination (L2.5G1). The effectiveness of the lime treatments was influenced by the initial soil pH (as suggested by the findings of other studies). The lime, and to a lesser extent the gypsum treatments, improved the physical properties of the soil as measured by the Emerson aggregate test, penetrometer resistance, infiltration, and water availability. A tillage effect was also present resulting in less dispersion, decreased penetrometer resistance, and higher infiltration rates in plots prepared with reduced tillage practices than direct drill plots. Plant-available water content (AWC) was significantly higher in the surface soil of plots treated with L2.5G1 than control treatments. The L5G0 and L0G5 treatments did not significantly improve the AWC. Crop yields were increased by some of the lime–gypsum treatments in both 1995 and 1996. Corresponding with the increased AWC, the L2.5G1 treatment produced the highest crop yields. Plots with reduced tillage had consistently higher yields than those with direct drill treatment.


2013 ◽  
Vol 27 (1) ◽  
pp. 231-240 ◽  
Author(s):  
Bo Melander ◽  
Nicolas Munier-Jolain ◽  
Raphaël Charles ◽  
Judith Wirth ◽  
Jürgen Schwarz ◽  
...  

Noninversion tillage with tine- or disc-based cultivations prior to crop establishment is the most common way of reducing tillage for arable cropping systems with small grain cereals, oilseed rape, and maize in Europe. However, new regulations on pesticide use might hinder further expansion of reduced-tillage systems. European agriculture is asked to become less dependent on pesticides and promote crop protection programs based on integrated pest management (IPM) principles. Conventional noninversion tillage systems rely entirely on the availability of glyphosate products, and herbicide consumption is mostly higher compared to plow-based cropping systems. Annual grass weeds and catchweed bedstraw often constitute the principal weed problems in noninversion tillage systems, and crop rotations concurrently have very high proportions of winter cereals. There is a need to redesign cropping systems to allow for more diversification of the crop rotations to combat these weed problems with less herbicide input. Cover crops, stubble management strategies, and tactics that strengthen crop growth relative to weed growth are also seen as important components in future IPM systems, but their impact in noninversion tillage systems needs validation. Direct mechanical weed control methods based on rotating weeding devices such as rotary hoes could become useful in reduced-tillage systems where more crop residues and less workable soils are more prevalent, but further development is needed for effective application. Owing to the frequent use of glyphosate in reduced-tillage systems, perennial weeds are not particularly problematic. However, results from organic cropping systems clearly reveal that desisting from glyphosate use inevitably leads to more problems with perennials, which need to be addressed in future research.


Weed Science ◽  
2009 ◽  
Vol 57 (3) ◽  
pp. 235-240 ◽  
Author(s):  
Bhagirath S. Chauhan ◽  
David E. Johnson

Junglerice is one of the most serious grass weeds of rice in the tropics. Experiments were conducted in the laboratory and screenhouse to determine the influence of environmental factors on seed germination and seedling emergence of junglerice in the Philippines. In the laboratory, germination was stimulated by light, suggesting that seeds of this species are positively photoblastic. The tested temperatures (35/25, 30/20, and 25/15 C alternating day/night temperatures), however, did not influence germination. Germination in the laboratory was not affected by a soil pH range of 4 to 9, but was decreased by salinity (> 50 mM NaCl) and moisture stress (< −0.2 MPa osmotic potential). In the screenhouse, germination of junglerice was greatest (97%) for seeds at the soil surface, but emergence declined exponentially with increasing seed burial depth, and no seedlings emerged from seeds buried at 6 cm. In pots, seedling emergence declined markedly with the addition of rice residue to the soil surface at rates equivalent to 4 to 6 tonnes (t) ha−1. As germination of junglerice was strongly stimulated by light, and seedling emergence was optimal at shallow burial depths, this species is likely to be problematic in reduced tillage systems.


Sign in / Sign up

Export Citation Format

Share Document