Crop rotation and soil N amendment effects on maize production in eastern Canada

2003 ◽  
Vol 83 (5) ◽  
pp. 483-495 ◽  
Author(s):  
B. L. Ma ◽  
J. Ying ◽  
L. M. Dwyer ◽  
E. G. Gregorich ◽  
M. J. Morrison

Relying less on fertilizer N and more on crop residual and biological N2 fixation by legume crops has been suggested as an effective way to meet the challenge of maximizing economic return while minimizing environmental pollution. A field study was conducted on a Brandon loam soil (Orthic Humic Gleysol) to determine the effects of crop rotation and N amendments on grain yield, crop growth, N uptake and use efficiency (NUE) of maize ( Zea mays L.) and fertilizer replacement values of legume. The rotations included maize in annual rotation with soybean [Glycine max (L.) Merrill], alfalfa ( Medicago sativa L.) or continuous maize. The soil N amendments included no amendment, NH4NO3 at 100 kg N ha-1, stockpiled or rotted dairy manure at 50 Mg ha-1 (wet weight). Averaged across 4 yr, increases in maize grain yield, total plant N uptake, and NUE ranged from 13 to 35% in the maize-soybean and maize-alfalfa rotations compared to continuous maize monoculture. During the study, total dry matter production was 15 to 35% higher and crop growth rate was 13 to 23% higher for maize following alfalfa than for continuous maize monoculture. The effect of legumes on the subsequent growth of maize (i.e., total dry matter production a n d crop growth rate) was most apparent during the grain filling period. Total maize dry matter production was similar up to silking stage for all three rotation systems; however, the difference in total dry matter between maize monoculture and maize in rotation with legume continued to increase after this stage so that the greatest differences were observed at physiological maturity. Grain yield was 19% higher in the 100 kg N ha-1 treatment and 23% higher in the repeated manure amendment than in the unfertilized treatment. Fertilizer N replacement values were on average, 68 kg ha-1 for soybean and 133 kg ha-1 for alfalfa. Our results indicate that maize in annual rotation with legume crops could increase the maize yields by as much as 20% and reduce the amount of chemical fertilizer N by as much as 180 kg N ha-1. The effect of legume preceding crop on maize dry matter production and N uptake is expressed mostly in the later stages of crop growth in this mid- to short-growing- season region. Key words: Rotation, Zea mays, dry matter accumulation, crop growth rate, manure, nitrogen use efficiency

1971 ◽  
Vol 77 (1) ◽  
pp. 123-134 ◽  
Author(s):  
Alison Davies

SummaryThe nitrogen requirements for maximum production of perennial ryegrass swards in August/September were shown to be of the order of 4 kg N/ha/day. Further increases above this level had no appreciable effect on dry-matter production, leaf area or light intercepted, but maximum tiller numbers were considerably enhanced. Shortage of nitrogenous fertilizer had comparatively little effect on crop growth rate in the early stages of regrowth, but thereafter caused the rate to fall increasingly short of potential. At high fertilizer levels crop growth rate based on total above-ground parts was linearly related to percentage light intercepted in the first month after defoliation, but values subsequently became erratic and at times negative. This change in crop growth rate and the resulting halt in effective net dry-matter production could be associated with the overall pattern of leaf and tiller formation and death, maximum net yield being achieved at the point in time when three new leaves had been produced on each tiller since cutting. It is concluded that in August and September worth-while increases in harvestable net dry matter are unlikely to occur after this stage has been reached, and that managements based on the maintenance of a complete crop cover are not likely to be successful at this time of year.


Author(s):  
D. Dev Kumar ◽  
D. Vishnu Vardhan Reddy ◽  
P. Raghuveer Rao ◽  
M. Sheshu Madhav ◽  
V. Gouri Shankar

The experimental field was laid in RBD replicated thrice with 30 high yielding rice genotypes which includes 26 advanced breeding lines (ABL) (SP-351, SP-352, SP-353, SP-354, SP-355, SP-356, SP-357, SP-358, SP-359, SP-360, SP-70, SP-72, SP-63, SP-61, SP-69, SP-55, SP-80, SP-25, SP-13,  SP-03, SP-02, SP-34, SP-37, SP-08, SP-75 and SP-57) and four checks (NDR-359, BPT-5204, IR-64, Jaya). Seven genotypes showed significantly higher leaf weight over the BPT-5204. Further, leaf weight at panicle initiation stage showed a positive relationship with TDM (Total Dry Matter) (r=0.51**). At the panicle initiation stage, only three genotypes (SP-354, SP-358, and SP-72) were superior to BPT-5204 in leaf weight. The shoot biomass and total dry weight was superior only in one genotype SP-72 as compared to BPT-5204. Similarly, the net assimilation rate at panicle initiation stage was maximum in SP-08 (9.92g m-2 day-1) and SP-72 (9.35g m-2 day-1) as compared to check BPT-5204 (6.47g m-2 day-1). These genotypes maintained higher photosynthetic rate (SP-72) and higher grain yield (SP-08). The relationship between CGR (Crop Growth Rate) and TDM (Total Dry Matter) and grain yield (r=0.61**) was positive and significant at physiological maturity. Genotypes SP-08 and SP-72 showed significantly higher CGR (Crop Growth Rate) over BPT-5204 and hence, yielded higher. In the present study compared to BPT-5204, genotypes SP-72, SP-08 maintained higher lea area index at all crop growth stages. These genotypes maintained higher photosynthetic rate (SP-72) and higher grain yield (SP-08). Positive significant relationship between LAI (Leaf Area Index) and total dry matter at harvest and; grain yield has been observed.


1975 ◽  
Vol 26 (1) ◽  
pp. 31 ◽  
Author(s):  
KS Fischer ◽  
GL Wilson

Growth analysis was applied to grain sorghum (cv. RS610) grown at low, medium and high population densities, i.e. 14,352, 143,520 and 645,836 plants ha-1 respectively. The medium densities had two arrangements of plants, square (S) and rectangular (R). Crop growth rates, inflorescence growth rates, leaf area indices, net assimilation rates and leaf growth rates were calculated from growth functions of plant dry matter and leaf area over time. Differences in crop growth rate between populations in the early stages were attributed to leaf area development—specifically to the initial leaf area (dependent on seedling number) and not to differences in leaf growth rates. Peak crop growth rates were 15.0, 27.5, 26.0 and 45.8 g m-2 day-1 for the low, medium (S), medium (R) and high populations respectively.The large difference between the growth rates of the medium (S) and the high populations was not explained by differences in the amount of radiation intercepted. Although leaf area indices were 4.6 and 10.2 respectively for the two populations, both canopies intercepted almost all of the noon radiation. Light extinction coefficients were 0.45 and 0.29 respectively. The relationship between net assimilation rate and leaf area index was such that for comparable leaf area indices above 2, plants at higher densities showed greater improvement in yield per unit increment in leaf area index. A maximum grain yield of 14,250 kg ha-1 was obtained at the high population density as a result of higher dry matter production, but a similar harvest index to that of the crops grown at the other densities. Inflorescence growth rate (g m-2 day-l) slightly exceeded crop growth rate in the latter part of grain filling, which indicated that there was some retranslocation to the grain of previously assimilated material. The maximum grain yield represents an efficiency of utilization of short-wave solar radiation during crop life of 2.5 x 10-6g cal-1. *Part IV, Aust. J. Agric. Res., 26: 25 (1975).


1973 ◽  
Vol 9 (2) ◽  
pp. 169-180 ◽  
Author(s):  
R. H. V. Corley

SUMMARYCrop growth rate of oil palm increases with leaf area index (LAI) to about 40 tons/ha./yr at the highest LAIs obtained. Net assimilation rate and dry matter production per palm decrease with increasing LAI, but the amount of dry matter per palm incorporated in vegetative tissues is unaffected by density. As a result the optimal LAI for oil yield is considerably below the critical LAI for maximum crop growth rate.


2012 ◽  
Vol 58 (4) ◽  
pp. 121-130 ◽  
Author(s):  
Abha Mishra

Abstract The response of rice roots and shoots and their causal relationships affecting yield under varying soil water condition are important related subjects of research. To understand the mechanism of response, studies were conducted using four water treatments: a) intermittent flooding through the vegetative stage (IF-V); b) intermittent flooding extended into the reproductive stage (IF-R); c) no standing water (NSW), maintaining soil at field capacity; and d) continuous flooding (CF) condition at the Asian Institute of Technology in Thailand. It was observed that the senescence of lower leaf and flag leaf was delayed under IF-V compared to CF water condition. This delay was associated with higher root oxidizing activity (ROA) rate (50% higher than CF), higher root length density (RLD) (52% higher than CF), higher biomass production (14% higher than CF) along with higher grain yield (25% higher than CF). The plants grown under NSW conditions had better growth at later growth stage and better yield performance compared to IF-R because of higher nitrogen availability and higher uptake rate under NSW water conditions (73% higher N uptake). However, under CF water condition the nitrogen availability was not a limiting factor but due to decreased root activity rate the dry matter production and grain yield significantly reduced compared to IF-V water condition. The results suggested that ROA and RLD are linked to shoot response and to dry matter production. A better understanding of the underlying mechanisms should assist in achieving improvements in crop productivity through improved crop management practices in water-limiting environment.


1982 ◽  
Vol 98 (1) ◽  
pp. 141-155 ◽  
Author(s):  
J. Ashworth ◽  
F. V. Widdowson ◽  
A. Penny ◽  
A. J. Gibbs ◽  
R. A. Hodgkinson ◽  
...  

SUMMARYIn an experiment on permanent grass at Rothamsted during 1975–9 fertilizer-N was applied each year either by injecting an aqueous solution of urea (supplying 250, 375 or 500 kg N/ha) in spring, or by broadcasting ‘Nitro-Chalk’ granules (supplying 100, 200, 300, 400 or 500 kg N/ha) in six equal dressings for each of six cuts.Dry-matter production was largest on plots injected with urea through knives 30 cm apart, and more N was recovered from the injected than from the broadcast applications. Aqueous urea injected at the 60 cm knife spacing nitrified more slowly and persisted in the soil longer than urea injected at 30 cm spacing; this persistence caused grass to grow more uniformly throughout the season, but yields were less. Injecting the nitrification inhibitor sodium trithiocarbonate (STC) with the aqueous urea postponed N uptake much less than doubling knife spacing, but the inhibitor substantially diminished percentage N03-N in harvested grass.In spring 1977 individual plots were split to measure N residues. Half-plots thus received N at the specified rates, either in 4 successive years (1975–8) or in two pairs of successive years (1975 and 1976; 1978 and 1979). In 1977 urea injected in the 2 previous years gave large residual effects, which were increased by STC and also by injecting in bands 60 instead of 30 cm apart. Broadcast ‘Nitro-Chalk’ had much smaller residual effects. In 1979 residual effects of N applied in the 4 previous years were apparently small, regardless of the method of application, because clover became abundant on plots not given N.In 1978 dry-matter production was smaller where N had been given each year during 1975–8 than where N was withheld in 1977. Analysis showed this was caused by a shortage of potassium. This effect was most pronounced where 375 or 500 kg N/ha had been injected in bands 60 cm apart.The results showed that a single, injected application of aqueous urea increased yields of dry grass as effectively as equivalent repeated dressings of ‘Nitro-Chalk’.


2017 ◽  
Vol 14 (2) ◽  
pp. 147-154 ◽  
Author(s):  
MM Kamrozzaman ◽  
MAH Khan ◽  
S Ahmed ◽  
N Sultana

An experiment was conducted at Sadipur charland under Farming System Research and Development Site, Hatgobindapur, Faridpur, during rabi season of 2012-13 and 2013-14 to study the growth and yield performance of cv. BARI Gom-24 as affected by different dates of sowing under Agro-ecological Zone-12 (AEZ-12) of Bangladesh. The experiment was laid out in randomized complete block design with six replications, comprising five different dates of sowing viz. November 5, November 15, November 25, December 5 and December 15. Results reveal that the tallest plant, leaf area index, total dry matter, and crop growth rate were observed in November 25 sown crop and leaf area index, total dry matter and crop growth rate were higher at booting, grain filling, and tillering stages of the crop. Maximum effective tillers hill-1 (3.49), spikes m-2, (311), number of grains spike-1 (42.20) and 1000-grain weight (52.10 g) were produced by November 25 sown crop exhibited the highest grain (4.30 t ha-1) and straw yield (4.94 t ha-1) as well as harvest index (46.88%) of the crop. Lowest performance was observed both in early (November 5) and late sown crop (December 15). The overall results indicated that November 25 sown crop showed better performance in respect of growth and yield of wheat under charland ecosystem of Bangladesh.J. Bangladesh Agril. Univ. 14(2): 147-154, December 2016


1982 ◽  
Vol 22 (115) ◽  
pp. 76 ◽  
Author(s):  
KA Boundy ◽  
TG Reeves ◽  
HD Brooke

The effect of serial planting on dry matter production, leaf area, grain yield and yield components cf Lupinus angustifoiius (cvv. Uniwhite, Uniharvest and Unicrop) and L. albus (cv. Ultra) was investigated in field plots at Rutherglen in 1973 and 1974. Delayed planting reduced dry matter production of all cultivars, and leaf area for Ultra. Differences in dry matter partitioning were observed between the late flowering Uniharvest, and the early flowering Unicrop and Ultra. In Uniharvest, delayed plantings resulted in a greater proportion of total dry matter being produced during the flowering phase, whereas the reverse was true for Unicrop and Ultra. The later flowering cultivars showed marked grain yield and yield component reduction with later sowing. Yields were reduced by 160.6 kg/ha and 222.5 kg/ha for each week's delay in sowing Uniharvest and Uniwhite, respectively. This effect was offset in the early flowering cultivars by greater development of lateral branches. In addition, when Unicrop and Ultra were planted in April, pod and flower abortion on the main stem resulted from low temperatures at flowering time. Optimum sowing time was early April for Uniwhite and Uniharvest, and early May for Unicrop and Ultra. Excellent vegetative growth under ideal moisture conditions highlighted the poor harvest indices of lupins and the scope for genetic improvement in the genus.


1979 ◽  
Vol 30 (1) ◽  
pp. 53 ◽  
Author(s):  
JH Silsbury ◽  
L Adem ◽  
P Baghurst ◽  
ED Carter

Shoot dry matter yield data for swards of Medicago truncatula cv. Jemalong established on two occasions at Adelaide in 1975 have been used to examine the influence of sowing rate on the seasonal growth pattern of this species. The patterns of dry matter growth are assessed: (i) by the use of a logistic function; (ii) by a growth stage approach involving an initial phase of approximately exponential growth (stage I) followed by a phase of almost constant growth rate (stage II). Two methods are given for determining the duration of these stages. It was found that stage I1 began at a shoot dry weight of about 300 g m-2, irrespective of sowing rate. End-of-season yield at about 10 t ha-1 was largely independent of sowing time and of sowing density. A maximum crop growth rate of 14.9 g m-2 d-1 was recorded for low density and late sowing. Sowing density had a marked effect on the shape of the growth curves; both the maximum crop growth rate and the average crop growth rate in stage II decreased with increase in sowing rate for each time of sowing.


Sign in / Sign up

Export Citation Format

Share Document