scholarly journals Towards standards for measuring greenhouse gas fluxes from agricultural fields using instrumented towers

2006 ◽  
Vol 86 (3) ◽  
pp. 373-400 ◽  
Author(s):  
E. Pattey ◽  
G. Edwards ◽  
I B Strachan ◽  
R L Desjardins ◽  
S. Kaharabata ◽  
...  

This is a discussion of the available technology for measuring turbulent fluxes using instrumented towers. This review focuses on the flux measurements of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) for agricultural systems and the development of standards and protocols for measuring them. Agroecosystems present unique challenges because they undergo large leaf area index (LAI) and canopy architecture changes in a relatively short period of time (i.e., months) coupled with the fact that many of the greenhouse gas sources are diffuse. This review examines all aspects of the theory and application of the micrometeorological techniques, with focus on the flux gradient, eddy accumulation and eddy covariance techniques. Instrument placement, sens or response and noise characteristics are also explored. Innovative applications of micrometeorological methods are discussed for closed- and open-path trace gas sensors and commonly used meteorological instrumentation. The use of fast response single-pass optical tunable diode laser (i.e., CH4, N2O) and infrared gas analyzers (i.e., CO2, H2O) is described. Consideration is also taken of the trace gas sensors’flow system design, mixing ratio measurement, and data acquisition and reduction requirements for micrometeorological flux measurement. Procedures are outlined for the meteorological instrumentation necessary for eddy covariance-based energy budget measurement including ultrasonic anemometry. Key words: Tower-based greenhouse gas flux measurements, nitrous oxide, methane, carbon dioxide, tunable diode laser

A fast-response, high precision, tunable diode laser spectrometer has been developed for field measurements of methane and nitrous oxide fluxes using the eddy correlation method. The instrument uses a novel multiple-pass absorption cell with astigmatic mirrors to provide a long absorption path length (36 m) in a small volume (0.3 l). The combination permits rapid response with sufficient sensitivity for eddy correlation flux measurements over a wide range of meteorological conditions. Signal processing uses a least-squares fitting algorithm to determine absolute trace gas concentrations directly from the absorption spectra using spectral line parameters at data rates up to 20 Hz. The precision for methane and nitrous oxide is 0.1% of ambient levels with a 1 s averaging time. Extensions of the method to measurements of surface-reactive gases such as nitric acid and ammonia are possible using rapid sampling techniques to minimize surface interactions.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Xue Hao ◽  
Yu Ruihong ◽  
Zhang Zhuangzhuang ◽  
Qi Zhen ◽  
Lu Xixi ◽  
...  

AbstractGreenhouse gas (GHG) emissions from rivers and lakes have been shown to significantly contribute to global carbon and nitrogen cycling. In spatiotemporal-variable and human-impacted rivers in the grassland region, simultaneous carbon dioxide, methane and nitrous oxide emissions and their relationships under the different land use types are poorly documented. This research estimated greenhouse gas (CO2, CH4, N2O) emissions in the Xilin River of Inner Mongolia of China using direct measurements from 18 field campaigns under seven land use type (such as swamp, sand land, grassland, pond, reservoir, lake, waste water) conducted in 2018. The results showed that CO2 emissions were higher in June and August, mainly affected by pH and DO. Emissions of CH4 and N2O were higher in October, which were influenced by TN and TP. According to global warming potential, CO2 emissions accounted for 63.35% of the three GHG emissions, and CH4 and N2O emissions accounted for 35.98% and 0.66% in the Xilin river, respectively. Under the influence of different degrees of human-impact, the amount of CO2 emissions in the sand land type was very high, however, CH4 emissions and N2O emissions were very high in the artificial pond and the wastewater, respectively. For natural river, the greenhouse gas emissions from the reservoir and sand land were both low. The Xilin river was observed to be a source of carbon dioxide and methane, and the lake was a sink for nitrous oxide.


2011 ◽  
Vol 8 (9) ◽  
pp. 2815-2831 ◽  
Author(s):  
W. Eugster ◽  
T. DelSontro ◽  
S. Sobek

Abstract. Greenhouse gas budgets quantified via land-surface eddy covariance (EC) flux sites differ significantly from those obtained via inverse modeling. A possible reason for the discrepancy between methods may be our gap in quantitative knowledge of methane (CH4) fluxes. In this study we carried out EC flux measurements during two intensive campaigns in summer 2008 to quantify methane flux from a hydropower reservoir and link its temporal variability to environmental driving forces: water temperature and pressure changes (atmospheric and due to changes in lake level). Methane fluxes were extremely high and highly variable, but consistently showed gas efflux from the lake when the wind was approaching the EC sensors across the open water, as confirmed by floating chamber flux measurements. The average flux was 3.8 ± 0.4 μg C m−2 s−1 (mean ± SE) with a median of 1.4 μg C m−2 s−1, which is quite high even compared to tropical reservoirs. Floating chamber fluxes from four selected days confirmed such high fluxes with 7.4 ± 1.3 μg C m−2 s−1. Fluxes increased exponentially with increasing temperatures, but were decreasing exponentially with increasing atmospheric and/or lake level pressure. A multiple regression using lake surface temperatures (0.1 m depth), temperature at depth (10 m deep in front of the dam), atmospheric pressure, and lake level was able to explain 35.4% of the overall variance. This best fit included each variable averaged over a 9-h moving window, plus the respective short-term residuals thereof. We estimate that an annual average of 3% of the particulate organic matter (POM) input via the river is sufficient to sustain these large CH4 fluxes. To compensate the global warming potential associated with the CH4 effluxes from this hydropower reservoir a 1.3 to 3.7 times larger terrestrial area with net carbon dioxide uptake is needed if a European-scale compilation of grasslands, croplands and forests is taken as reference. This indicates the potential relevance of temperate reservoirs and lakes in local and regional greenhouse gas budgets.


2021 ◽  
Author(s):  
Richard Sims ◽  
Brian Butterworth ◽  
Tim Papakyriakou ◽  
Mohamed Ahmed ◽  
Brent Else

<p>Remoteness and tough conditions have made the Arctic Ocean historically difficult to access; until recently this has resulted in an undersampling of trace gas and gas exchange measurements. The seasonal cycle of sea ice completely transforms the air sea interface and the dynamics of gas exchange. To make estimates of gas exchange in the presence of sea ice, sea ice fraction is frequently used to scale open water gas transfer parametrisations. It remains unclear whether this scaling is appropriate for all sea ice regions. Ship based eddy covariance measurements were made in Hudson Bay during the summer of 2018 from the icebreaker CCGS Amundsen. We will present fluxes of carbon dioxide (CO<sub>2</sub>), heat and momentum and will show how they change around the Hudson Bay polynya under varying sea ice conditions. We will explore how these fluxes change with wind speed and sea ice fraction. As freshwater stratification was encountered during the cruise, we will compare our measurements with other recent eddy covariance flux measurements made from icebreakers and also will compare our turbulent CO<sub>2 </sub>fluxes with bulk fluxes calculated using underway and surface bottle pCO<sub>2</sub> data. </p><p> </p>


2018 ◽  
Vol 32 (1) ◽  
pp. 29-37 ◽  
Author(s):  
Robert Czubaszek ◽  
Agnieszka Wysocka-Czubaszek

AbstractDigestate from biogas plants can play important role in agriculture by providing nutrients, improving soil structure and reducing the use of mineral fertilizers. Still, less is known about greenhouse gas emissions from soil during and after digestate application. The aim of the study was to estimate the emissions of carbon dioxide (CO2) and methane (CH4) from a field which was fertilized with digestate. The gas fluxes were measured with the eddy covariance system. Each day, the eddy covariance system was installed in various places of the field, depending on the dominant wind direction, so that each time the results were obtained from an area where the digestate was distributed. The results showed the relatively low impact of the studied gases emissions on total greenhouse gas emissions from agriculture. Maximum values of the CO2and CH4fluxes, 79.62 and 3.049 µmol s−1m−2, respectively, were observed during digestate spreading on the surface of the field. On the same day, the digestate was mixed with the topsoil layer using a disc harrow. This resulted in increased CO2emissions the following day. Intense mineralization of digestate, observed after fertilization may not give the expected effects in terms of protection and enrichment of soil organic matter.


2013 ◽  
Vol 10 (11) ◽  
pp. 7739-7758 ◽  
Author(s):  
A. Meyer ◽  
L. Tarvainen ◽  
A. Nousratpour ◽  
R. G. Björk ◽  
M. Ernfors ◽  
...  

Abstract. Afforestation has been proposed as a strategy to mitigate the often high greenhouse gas (GHG) emissions from agricultural soils with high organic matter content. However, the carbon dioxide (CO2) and nitrous oxide (N2O) fluxes after afforestation can be considerable, depending predominantly on site drainage and nutrient availability. Studies on the full GHG budget of afforested organic soils are scarce and hampered by the uncertainties associated with methodology. In this study we determined the GHG budget of a spruce-dominated forest on a drained organic soil with an agricultural history. Two different approaches for determining the net ecosystem CO2 exchange (NEE) were applied, for the year 2008, one direct (eddy covariance) and the other indirect (analyzing the different components of the GHG budget), so that uncertainties in each method could be evaluated. The annual tree production in 2008 was 8.3 ± 3.9 t C ha−1 yr−1 due to the high levels of soil nutrients, the favorable climatic conditions and the fact that the forest was probably in its phase of maximum C assimilation or shortly past it. The N2O fluxes were determined by the closed-chamber technique and amounted to 0.9 ± 0.8 t Ceq ha−1 yr−1. According to the direct measurements from the eddy covariance technique, the site acts as a minor GHG sink of −1.2 ± 0.8 t Ceq ha−1 yr−1. This contrasts with the NEE estimate derived from the indirect approach which suggests that the site is a net GHG emitter of 0.6 ± 4.5 t Ceq ha−1 yr−1. Irrespective of the approach applied, the soil CO2 effluxes counter large amounts of the C sequestration by trees. Due to accumulated uncertainties involved in the indirect approach, the direct approach is considered the more reliable tool. As the rate of C sequestration will likely decrease with forest age, the site will probably become a GHG source once again as the trees do not compensate for the soil C and N losses. Also forests in younger age stages have been shown to have lower C assimilation rates; thus, the overall GHG sink potential of this afforested nutrient-rich organic soil is probably limited to the short period of maximum C assimilation.


Sign in / Sign up

Export Citation Format

Share Document