Chemical and mineral composition of ectomycorrhizosphere soils of subalpine fir (Abieslasiocarpa (Hook.) Nutt.) in the Ae horizon of a Luvisol

1999 ◽  
Vol 79 (1) ◽  
pp. 25-35 ◽  
Author(s):  
J. M. Arocena ◽  
K. R. Glowa ◽  
H. B. Massicotte ◽  
L. Lavkulich

Differences in the properties of bulk forest and rhizosphere soils are often attributed to ectomycorrhizal association, or the symbiosis characterized by a fungal sheath surrounding the root (mantle) and intercellular root colonization (Hartig net). We compared the soil pH, total C, N, cation exchange capacity, and the contents of mica, chlorite, kaolinite, 2:1 expandable clays, feldspars and amorphous materials between two ectomycorrhizosphere soils (or soil environment in the vicinity of ectomycorrhizae (ECM)) and non-ectomycorrhizosphere soils to study the influence of ectomycorrhizae on chemical and mineralogical properties of soils. The two ectomycorrhizosphere soils were characterized by ectomycorrhizal colonization dominated by (1) Piloderma spp., and (2) Mycelium radicis atrovirensand cottony yellow-brown (MRA-CYB) types or where Piloderma spp. colonization was <2%. Our results showed that total C and N were higher in ectomycorrhizosphere than non-ectomycorrhizosphere soils, and the ectomycorrhizosphere soils dominated by Piloderma spp. had almost twice the total C and N as ectomycorrhizosphere soils with MRA-CYB. Soil pH was lower by half a pH unit in ectomycorrhizosphere soils compared to non-ectomycorrhizosphere soils. Cation exchange capacity as well as exchangeable Ca2+, Mg2+ and K+ were lower in non-ectomycorrhizosphere soil compared to ectomycorrhizosphere soils. We also found that cation exchange capacity, exchangeable Ca2+, Mg2+ and K+ values in soils dominated by Piloderma spp. were higher compared to ectomycorrhizosphere soils with insignificant Piloderma spp. Our results suggest that transformation rate of mica and chlorite to 2:1 expandable clays was predominant in ectomycorrhizosphere compared to non-ectomycorrhizosphere soils, likely as a result of high production of organic acids and direct extraction of K+ and Mg2+ by fungal hyphae. In ectomycorrhizoplane samples, it is suggested that K+ and possibly amorphous Al2O3 and Fe2O3 could reconstitute the degraded mica and chlorite through the formation of hydroxy-interlayered 2:1 clays. Key words: Ectomycorrhizosphere soils, subalpine fir, Piloderma spp.

1995 ◽  
Vol 25 (6) ◽  
pp. 997-1007 ◽  
Author(s):  
S. Brais ◽  
C. Camiré ◽  
D. Paré

To assess the impact of forest operations on soil nutrient status, modifications to forest floor, to 0–10 and 10–20 cm mineral soil base status, and to pH were evaluated 5–12 years following whole-tree harvesting and winter windrowing on dry to fresh and moist clayey sites in the clay belt region of northwestern Quebec. Whole-tree harvesting had few impacts on base concentrations and soil pH of dry to fresh sites. On moist sites, significant decreases in pH (−0.60 to −0.84 units), exchangeable Ca, total Ca, and, exchangeable Mg concentrations, base saturation, and effective cation exchange capacity were observed following harvesting. On dry to fresh sites, a decrease in the forest floor weight (−55%) accounted for significant reductions in exchangeable Ca (−55%), total Ca (−61%), and exchangeable K (−40%) pools in this layer, while reserves of both mineral layers were not affected. On moist sites, significant decreases in exchangeable Ca (−42 to −65%) and Mg (−35 to −56%) reserves occurred in all soil layers, while forest floor reserves of total Ca, Mg, and K decreased by 67, 48, and 40%, respectively. These reductions were caused by a loss of substrate in the forest floor (−44%) and a decrease in effective cation exchange capacity, exchangeable Ca saturation, and total Ca concentrations. Impacts of windrowing following whole-tree harvesting were limited to a reduction in reserves of exchangeable Ca (−22%), exchangeable Mg (−27%), total Ca (−20%), and total Mg (−29%) pools of the forest floor of moist sites. Values reported here are much greater than values generally predicted by a balance sheet approach and underline the need for more process-oriented studies. Impacts of these losses on long-term site productivity remain to be investigated.


1969 ◽  
Vol 69 (3) ◽  
pp. 357-365
Author(s):  
Edmundo Rivera ◽  
José Rodríguez ◽  
Fernando Abruña

The effect of acidity factors of two Ultisols and one Oxisol on yield and foliar composition of tomatoes was determined. Yields were not markedly reduced by acidity in the Ultisols until pH dropped to around 4.6 with 45% Al saturation of the cation exchange capacity (CEC), and no yield was produced at about pH 4.1 and 80% Al saturation. In the Oxisol, tomato yields dropped steadily from 39.7 t/ha, when there was no exchangeable AI, to 17.5 t/ha at the highest level of acidity, pH 4.4 and 43% AI saturation. In all soils, yields were closely correlated with soil pH, exchangeable Al and Ca and Al/Ca.


1977 ◽  
Vol 57 (3) ◽  
pp. 233-247 ◽  
Author(s):  
ROGER W. BARIL ◽  
THI SEN TRAN

Correlations were made among chemical criteria used for taxonomic soil classificaton. The compared tests were: oxalate Δ (Fe + Al), pyrophosphate-extractable (Fe + Al), oxalate-extractable Al, pH-dependent cation exchange capacity (ΔCEC), ratios of pyrophosphate-extractable (Fe + Al) over clay or over dithionite-extractable (Fe + Al), and finally soil pH measured in 1 M NaF. Significant correlations were found among various measured parameters. However, no single test was found to be reliable as a single criterion when applied to the taxonomic classification of Quebec soils. The two chemical tests, pyrophosphate-extractable (Fe + Al) and its ratio over clay, combined with morphologic criteria appeared useful for classifying Quebec Podzols. A few soils, which presented discrepancies from chemical criteria were found difficult to classify, thus suggesting the possibility of establishing new sub-groups in the Canadain soil taxonomic classification system.


2017 ◽  
Vol 29 (2) ◽  
pp. 123-131
Author(s):  
Reshma Akter ◽  
Md Jamal Uddin ◽  
Md Faruque Hossain ◽  
Zakia Parveen

A study was carried out to evaluate the effects of brick manufacturing on phosphorus (P) and sulfur (S) concentrations in soil and plant collected from different distances of brick kilns in four AEZs of Bangladesh. Forty eight composite soil samples (0 - 15 cm depth) were collected from 48 points in 12 different sites at 0 m, 300 m, 800 m and 1500 m from brick kilns, where most (site 2, site 3, site 5, site 6, site 7, site 9 and site 10) of the brick kilns used coal for brick burning purposes. Plant samples (rice straw and different vegetables) were also collected from the respective fields except 0 m distances. Significantly (p ? 0.05) lower organic matter, cation exchange capacity, clay content and soil pH were found at 0 m distances compared to other distances. Highest concentration of total P in soil were recorded at 0 m distances and these concentrations decreased with increasing distances from the brick kilns in most of the sites; whereas available P is significantly lower at 0 m distances than that of other distances. Total and available concentration of S in soil followed the trend 0 m>300 m>800 m>1500 m. Maximum accumulation of P (69.15 mg kg-1) and S (0.14%) in plant was found at 800 m away from the brick kiln.Bangladesh J. Sci. Res. 29(2): 123-131, December-2016


1971 ◽  
Vol 51 (3) ◽  
pp. 405-410
Author(s):  
A. K. Ballantyne

Leaching a silt loam soil (cation exchange capacity 23 meq/100 g) with water containing increasing rates of potassium dust (KCl) indicated that high levels adversely affected germination and yields of wheat as well as response to fertilizer. Germination was greatly reduced by the treatment with 22.4 metric tons per hectare and nearly eliminated by 44.8 tons. The 44.8-ton/ha treatment also greatly reduced the yield of grain, but straw weights were affected very little by increasing rates of potassium dust. Response to fertilizer was also reduced by 22.4 and 44.8 tons. The exchangeable Ca and Mg decreased and K increased as increasing amounts of K dust were leached through the soil. The 44.8-ton treatment decreased the exchangeable Ca from 56.0 to 24.9% and the Mg from 21.2 to 4.9%, and increased the K from 7.2 to 51.9%. It would appear that K salts can be added to the soil, without any adverse effects, until the exchangeable K is increased to about 30%. With the soil under study this took more than 11.2 tons per ha (5 short tons/acre). The application of dolomite ameliorated the effect of excess K.


2002 ◽  
Vol 32 (10) ◽  
pp. 1829-1837 ◽  
Author(s):  
J Herbauts ◽  
V Penninckx ◽  
W Gruber ◽  
P Meerts

In a mixed forest stand on an ochreous brown earth in the Belgian Ardennes, pedunculate oak (Quercus robur L.) and European beech (Fagus sylvatica L.) have outwardly decreasing cation concentration profiles in wood. To test if these profiles can be ascribed to endogenous factors or to decreased availability of cations in the soil, radial profiles of water-soluble, exchangeable, and total cations and of cation exchange capacity (CEC) of wood were determined. In both species, [Formula: see text]75% of K is in the water-soluble form so is of little use for dendrochemical monitoring. About 80% of Mg is adsorbed on wood exchange sites. For Ca, 30 (beech) to 60% (oak) of total content cannot be extracted by SrCl2 and is, thus, relatively immobile in wood. Wood CEC decreases from pith to bark in European beech and from pith to outer heartwood in pedunculate oak. Decreasing profiles of exchangeable Ca and Mg in pedunculate oak and exchangeable Ca in European beech are strongly constrained by CEC and, thus, are not related to environmental change. Base cation saturation rate shows no consistent radial change in either species. European beech maintained much higher base cation saturation rate than pedunculate oak, although both species had similar CEC. In conclusion, the results do not provide convincing evidence for a significant change in nutritional status of pedunculate oak and European beech in the Belgian Ardennes due to atmospheric pollution.


2004 ◽  
Vol 18 (2) ◽  
pp. 243-247 ◽  
Author(s):  
Gregory W. Kerr ◽  
Phillip W. Stahlman ◽  
J. Anita Dille

Effects of soil pH and cation exchange capacity (CEC) on sunflower tolerance to sulfentrazone were investigated in a greenhouse study. Variables were soil pH (7.0, 7.3, 7.5, and 7.8), soil CEC (8.2, 13.7, 18.4, and 23.3 cmol/kg), and sulfentrazone rate (0, 105, 158, and 184 g ai/ha). Sulfentrazone-induced leaf chlorosis was affected by soil pH at 12 d after planting (DAP), but plants recovered, and earlier differences were not visible 9 d later. At 12 DAP, leaf chlorosis was 3 or 4% more severe in soils with pH 7.3 or higher compared with soils with pH 7.0 when averaged over both sulfentrazone rate and soil CEC. Leaf chlorosis resulting from sulfentrazone rates of 105, 158, and 184 g/ha was 17, 25, and 35% less at 23 cmol/kg than at 8.2 cmol/kg, respectively. Differences in chlorosis among sulfentrazone rates were greatest in soil with low CEC and lessened as soil CEC increased. Plants regained normal color over time, and newly emerging leaves were not affected. However, plant dry weights were reduced when sulfentrazone rate was ≥158 g/ha. Averaged over sulfentrazone rate and soil pH, sunflower dry weights were less when soil CEC was 8.2 compared with a CEC of 13.7 cmol/kg or higher, indicating a greater response at low CEC. Sunflower plant dry matter was not different in sulfentrazone-treated soil with a CEC above 13.7 cmol/kg. At the ranges tested, soil CEC had a considerably greater effect than did pH on sunflower tolerance to sulfentrazone.


1986 ◽  
Vol 58 (2) ◽  
pp. 47-51
Author(s):  
Raina Niskanen

The number of successive extractions with 1 M KCI needed for adequate estimation of effective cation-exchange capacity was studied with four mineral soils. The effective CEC estimated as the sum of equivalents of exchangeable Ca, Mg, Na, H and Al extracted by four successive treatments ranged from 57 to 206 meq/kg soil. In three cultivated soils, 63—90 % of CEC was saturated by Ca and Mg, in the fourth soil (a deeper layer virgin soil), 60 % of CEC by exchangeable H and Al. By two successive treatments often minutes duration with 50ml of 1 M KCI, the equivalent sum of exchangeable cations extracted amounted to 83—92 % of effective CEC in cultivated soils and 67 % of that in virgin soil; >90 % of exchangeable Ca and Mg, 78—97 % of Al, 48—62 % of H and 28—64 % of Na were extracted. By three successive treatments the equivalent sum amounted to 79—96 % of effective CEC, by the single treatment of 30 minutes duration with 100ml of 1 M KCI to 57—79 %. Two successive extractions with 1 M KCI may be enough for estimation of effective CEC in cultivated mineral soils with high degree of saturation by exchangeable Ca and Mg. Soils with high degree of saturation by exchangeable acidity require three successive extractions.


1986 ◽  
Vol 58 (1) ◽  
pp. 1-7
Author(s):  
Raina Niskanen ◽  
Antti Jaakkola

The efficiency of the soil testing method used in Finland for predicting the effective cation-exchange capacity was studied in a material of 430 topsoil samples. The effective cation-exchange capacity was estimated 1) by summation of exchangeable Ca, Mg and acidity displaced by unbuffered 1 M KCI and 2) by summation of exchangeable Ca, Mg, K and Na displaced by neutral 1 M ammonium acetate and exchangeable acidity. In soil testing, Ca, Mg and K were extracted by acid ammonium acetate and soil pH measured in water-suspension. The estimates of the effective CEC were highly correlated and dependent on the clay and organic carbon content and pH(CaCl2) of the soil, the coefficient of multiple determination being over 80 %. Exchangeable Ca was the dominating cation. The proportion of Ca of the effective CEC was about 80 %. Acid ammonium acetate-extractable Ca together with pH(H2O) explained over 80 % of the variation in the effective CEC. For the whole material consisting of mineral soils with great variations in texture, organic carbon content and properties under evaluation, the regression equation predicting the effective CEC (KCI method) was CEC (mval/kg) = 309—56.8pH(H2O) + 0.085Ca(mg/l). Only 16 % of the estimates of the effective CEC calculated with this regression equation deviated more than 15 % from the measured values.


2019 ◽  
Vol 8 (4) ◽  
pp. 61
Author(s):  
Nan Xu ◽  
Jehangir H. Bhadha ◽  
Abul Rabbany ◽  
Stewart Swanson

The addition of organic amendments and cover cropping on sandy soils are regenerative farming practices that can potentially enhance soil health. South Florida mineral soils present low soil quality due to their sandy texture and low organic matter (OM) content. Few studies have focused on evaluating the effects of farm-based management regenerative practices in this region. The objective of this study was to evaluate changes in soil properties associated with two regenerative farming practices - horse bedding application in combination with cover cropping (cowpea, Vigna unguiculata), compared to the practice of cover cropping only for two years. The soil quality indicators that were tested included soil pH, bulk density, water holding capacity, cation exchange capacity, OM, active carbon, soil protein and major nutrients (N, P, K). Results indicated no significant changes in soil pH, but a significant reduction in soil bulk density and a significant increase in maximum water holding capacity for both practices. Cation exchange capacity and the amounts of active carbon increased significantly after 1.5-year of the farming practices. Horse bedding application with cover cropping showed a significant 4% increase in OM during a short period. A significant increase in plant-available P was also observed under these two practices. Based on this study, horse bedding application as an organic amendment in conjunction with cover cropping provides an enhanced soil health effect compared to just cover cropping. As local growers explore farming option to improve soil health particularly during the fallow period using regenerative farming practices on sandy soils, these results will assist in their decision making.


Sign in / Sign up

Export Citation Format

Share Document