Explanation for the high heat stability of thyroxine binding globulin-Chicago

2010 ◽  
Vol 44 (2) ◽  
pp. 43-47 ◽  
Author(s):  
U. Duhan ◽  
P. Patston
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Robert Christie ◽  
Adrian Abel

Abstract Perylenes and perinones are separate groups of pigments categorized within the carbonyl chemical class. The two pigment groups show similarities, for example, in their chemical structural features and, to an extent, in their technical and application properties as high-performance organic pigments. Perylenes constitute a series of firmly established high-performance pigments, offering red and violet colors, and also extending to black. Synthetically, they are derived from perylene-1,4,5,8-tetracarboxylic acid. The perylenes tend to be quite expensive pigments, but their high levels of fastness properties mean that they are suitable for highly demanding applications. In particular, they offer very high heat stability. Two perinone pigments are used commercially. In their synthesis from naphthalene-1,4,5,8-tetracarboxylic acid, they are formed as mixtures of the two isomers, which can be separated. The trans isomer, CI Pigment Orange 43, is a highly important commercial pigment, especially for plastics, while the cis isomer, CI Pigment Red 194, is bordeaux in color and is of much lesser importance. The perinone, CI Pigment Orange 43, provides a brilliant orange color and has very good fastness properties. Its commercial manufacture involves a challenging multistage procedure and consequently it is one of the most expensive organic pigments on the market.


Materials ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1046 ◽  
Author(s):  
S. M. Shakil Hussain ◽  
Ahmad Mahboob ◽  
Muhammad Shahzad Kamal

Thermal stability, salt tolerance, and solubility in normal and high salinity brine are the major requirements for any surfactant designed for oilfield applications because the surfactant stays in a non-ambient environment inside the reservoir for a long period of time. Herein, a series of new gemini cationic surfactants (GSs) with varying spacer hydrophilicity were synthesized and elucidated using MALDI-ToF-MS, NMR (1H, 13C), as well as FTIR spectroscopy. GSs found to be soluble in normal as well as high salinity brine and aqueous stability tests revealed that GSs possess the ability to retain their structural integrity at high salinity and high temperature conditions because no suspension formation or precipitation was detected in the oven aged sample of GSs at 90 °C for 30 days. Thermal gravimetric analysis displayed a higher decomposition temperature than the real reservoir temperature and the GS with a secondary amine spacer exhibited high heat stability. The significant reduction in surface tension and critical micelle concentration was observed using 1 M NaCl solution in place of deionized water. The difference in surface tension and critical micelle concentration was insignificant when the 1 M NaCl solution was replaced with seawater. The synthesized surfactants can be utilized for oilfield applications in a challenging high temperature high salinity environment.


2012 ◽  
Vol 554-556 ◽  
pp. 667-670
Author(s):  
Li Tian ◽  
Jin Liu ◽  
Fei Yu Chen ◽  
Qi Liang Sun

Hexagonal sodium yttrium fluoride has been successfully synthesized via a facile solvothermal route, using yttrium nitrate, sodium fluoride and polyethanediol as raw materials to react in propanetriol solvent. The as-prepared product was characterized by powder X-ray diffraction, scanning electron microscopy, thermogravimetric and differential thermal analysis, Fourier transform infrared spectrum and energy dispersive X-ray spectrum. The characterization results revealed that the products are hexagonal and denoted as NaYF4. The as-synthesized hexagonal sodium yttrium fluoride composed of hollow-structured nanotubes self-assembled and arrayed orientedly to take on bamboo raft morphology. Hexagonal NaYF4 nanotube arrays exhibited high heat stability. This study provides a simple method to prepare bamboo raft-shaped NaYF4 in large scale, which broads their practical applications.


2018 ◽  
Vol 17 (3) ◽  
pp. 51-56
Author(s):  
N. V. Lopatina ◽  
B. N. Mishankin

The use of lyophilization as a means of preserving commercial properties of the dried live plague vaccine is closely linked to a number ofresistant microbial cells surviving in the preparation after microbial population exposure to such stress action. Lyophilized live vaccine efficiency, even without violation of storage rules at low temperatures (4 ± 2 – 6 ± 2 оС), decreases gradually due to death of live cells of microorganisms forming the base of a vaccine. Aim: The aim of this study was to enhance resistance of the reference vaccine strain Yersinia pestis EV of NIIEG lineage to freeze-drying in vacuum (lyophilization) by different techniques: the use of lyophilization process per se as a selection factor, resistant clone selection from populations of strains which underwent single, double and triple lyophiliation, strain culturing at low temperatures (4 ± 2 – 6 ± 2 °С). Summary and conclusion: It was demonstrated that after double and triple lyophilization the Y. pestis EV strain resistance to the process increased by 3–3.5 times. Clonal selection of twice and three times lyophilized variant facilitated detection of resistant clones and stabilization of this property.The clones selected were characterized by increased immunogenicity, high heat stability, as well as by increased duration of vaccine efficiency (by 2.3 times). A psychrophilic variant of Y. pestis EV strain was obtained in vitro acquiring higher resistance to lyophilization (in 2 times or more) in comparison with the reference strain. The number of psychrophilic variant cells surviving post-liophilization was higher in comparison with the commercial strain. Thus the methods used in this study for selection of strains and clones with the highest resistance to lyophilization from Y. pestis EV reference strain population showed a significant potential for quality improvement of dried live plague vaccine. So, the possibility of receiving of a vaccine of more high quality by means of the ways of selection explained in our work is experimentally confirmed. Effectiveness of these ways creates prerequisites for their use in production of a live plague vaccine.


2020 ◽  
Vol 86 (11) ◽  
Author(s):  
Eric P. Caragata ◽  
Luisa M. Otero ◽  
Jenny S. Carlson ◽  
Nahid Borhani Dizaji ◽  
George Dimopoulos

ABSTRACT Given the continued high prevalence of mosquito-transmitted diseases, there is a clear need to develop novel disease and vector control strategies. Biopesticides of microbial origin represent a promising source of new approaches to target disease-transmitting mosquito populations. Here, we describe the development and characterization of a novel mosquito biopesticide, derived from an air-dried, nonlive preparation of the bacterium Chromobacterium sp. Panama (family: Neisseriaceae). This preparation rapidly and effectively kills the larvae of prominent mosquito vectors, including the dengue and Zika vector Aedes aegypti and the human malaria vector Anopheles gambiae. During semi-field trials in Puerto Rico, we observed high efficacy of the biopesticide against field-derived A. aegypti populations, and against A. aegypti and Culex species larvae in natural breeding water, indicating the suitability of the biopesticide for use under more natural conditions. In addition to high efficacy, the nonlive Csp_P biopesticide has a low effective dose, a long shelf life, and high heat stability and can be incorporated into attractive larval baits, all of which are desirable characteristics for a biopesticide. IMPORTANCE We have developed a novel preparation to kill mosquitoes from an abundant soil bacterium, Chromobacterium sp. Panama. This preparation is an air-dried powder containing no live bacteria, and it can be incorporated into an attractive bait and fed directly to mosquito larvae. We demonstrate that the preparation has broad spectrum activity against the larval form of the mosquitoes responsible for the transmission of malaria and the dengue, chikungunya, yellow fever, West Nile, and Zika viruses, as well as mosquito larvae that are already resistant to commonly used mosquitocidal chemicals. Our preparation possesses many favorable traits: it kills at a low dosage, and it does not lose activity when exposed to high temperatures, all of which suggest that this preparation could eventually become an effective new tool for controlling mosquitoes and the diseases they spread.


CrystEngComm ◽  
2016 ◽  
Vol 18 (20) ◽  
pp. 3650-3654 ◽  
Author(s):  
Xin-Xin Lu ◽  
Yu-Hui Luo ◽  
Yu-Shuang Liu ◽  
Wen-Wen Ma ◽  
Yan Xu ◽  
...  

Three new 3D POM-based CuI coordination polymers have been successfully prepared by a hydrothermal reaction. Compounds 1–3 show remarkably high heat stability, acid and alkali resistance, and effectively degrade methylene blue within visible light range.


2010 ◽  
Vol 5 (1) ◽  
pp. 1-10
Author(s):  
Ernowo Ernowo ◽  
Penny Oktaviani

Chromites (Fe,Mg)Cr O is an oxide mineral in spinel group. It is one of metallic mineral which classified in to alloy and ferro alloy metallic mineral group along with iron, nickel, titanium, manganese, cobalt, and bauxite. Chromites is the only ore mineral of metallic chromium and chromium compounds and chemicals. Because of this fact, chromites and chrome ore are used synonymously in trade literature. It is used for refractory material, because it has high heat stability. In Indonesia, chromites deposits are widely distributed in the eastern part of Indonesia, which rich in metal bearing ultramafic to mafic intrusive especially in South Kalimantan, Sulawesi, Maluku, Halmahera, Gebe, Gag, Waigeo, and Papua. These deposits are resulted from weathering of ophiolite rocks as part of the Pacific plate.


Sign in / Sign up

Export Citation Format

Share Document