Quasi-Multipliers and Embeddings of Hilbert C*-Bimodules

1994 ◽  
Vol 46 (06) ◽  
pp. 1150-1174 ◽  
Author(s):  
Lawrence G. Brown ◽  
James A. Mingo ◽  
Nien-Tsu Shen

Abstract This paper considers Hilbert C*-bimodules, a slight generalization of imprimitivity bimodules which were introduced by Rieffel [20]. Brown, Green, and Rieffel [7] showed that every imprimitivity bimodule X can be embedded into a certain C*-algebra L, called the linking algebra of X. We consider arbitrary embeddings of Hilbert C*-bimodules into C*-algebras; i.e. we describe the relative position of two arbitrary hereditary C*-algebras of a C*-algebra, in an analogy with Dixmier's description [10] of the relative position of two subspaces of a Hilbert space. The main result of this paper (Theorem 4.3) is taken from the doctoral dissertation of the third author [22], although the proof here follows a different approach. In Section 1 we set out the definitions and basic properties (mostly folklore) of Hilbert C*-bimodules. In Section 2 we show how every quasi-multiplier gives rise to an embedding of a bimodule. In Section 3 we show that , the enveloping C*-algebra of the C*-algebraA with its product perturbed by a positive quasi-multiplier , is isomorphic to the closure (Proposition 3.1). Section 4 contains the main theorem (4.3), and in Section 5 we explain the analogy with the relative position of two subspaces of a Hilbert spaces and present some complements.

1999 ◽  
Vol 22 (1) ◽  
pp. 97-108 ◽  
Author(s):  
A. Parsian ◽  
A. Shafei Deh Abad

For a real Hilbert space(H,〈,〉), a subspaceL⊂H⊕His said to be a Dirac structure onHif it is maximally isotropic with respect to the pairing〈(x,y),(x′,y′)〉+=(1/2)(〈x,y′〉+〈x′,y〉). By investigating some basic properties of these structures, it is shown that Dirac structures onHare in one-to-one correspondence with isometries onH, and, any two Dirac structures are isometric. It is, also, proved that any Dirac structure on a smooth manifold in the sense of [1] yields a Dirac structure on some Hilbert space. The graph of any densely defined skew symmetric linear operator on a Hilbert space is, also, shown to be a Dirac structure. For a Dirac structureLonH, everyz∈His uniquely decomposed asz=p1(l)+p2(l)for somel∈L, wherep1andp2are projections. Whenp1(L)is closed, for any Hilbert subspaceW⊂H, an induced Dirac structure onWis introduced. The latter concept has also been generalized.


Author(s):  
Joachim Toft ◽  
Anupam Gumber ◽  
Ramesh Manna ◽  
P. K. Ratnakumar

AbstractLet $$\mathcal H$$ H be a Hilbert space of distributions on $$\mathbf{R}^{d}$$ R d which contains at least one non-zero element of the Feichtinger algebra $$S_0$$ S 0 and is continuously embedded in $$\mathscr {D}'$$ D ′ . If $$\mathcal H$$ H is translation and modulation invariant, also in the sense of its norm, then we prove that $$\mathcal H= L^2$$ H = L 2 , with the same norm apart from a multiplicative constant.


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Sung-Sik Lee

Abstract Einstein’s theory of general relativity is based on the premise that the physical laws take the same form in all coordinate systems. However, it still presumes a preferred decomposition of the total kinematic Hilbert space into local kinematic Hilbert spaces. In this paper, we consider a theory of quantum gravity that does not come with a preferred partitioning of the kinematic Hilbert space. It is pointed out that, in such a theory, dimension, signature, topology and geometry of spacetime depend on how a collection of local clocks is chosen within the kinematic Hilbert space.


1977 ◽  
Vol 19 (2) ◽  
pp. 259-263 ◽  
Author(s):  
Alexander Sokoloff

The relative position of the genes black (b), light ocular diaphragm (lod) and aureate (au) for the third linkage group of T. castaneum (Herbst) (Coleoptera, Tenebrionidae) has been determined as b – lod – au. The distances between the various genes vary, depending on the cross. The b++/+ lod au ♂ × + lod au/+ lod au ♀ crosses give the following recombination values: au – lod = 18.32 ± 1.21%; b – lod = 21.05 ± 1.51% and b – au = 37.43 ± 1.27%. The reciprocal crosses give au – lod = 27.67 ± 1.62%; b – lod = 13.97 ± 1.26% and b – au = 39.79 ± 1.78%. For the larger distances encompassed in the b – au region the recombination values in the two sexes were not significantly different. For the shorter b – lod region the recombination values were significantly larger in the females than in the males, while for the adjacent lod – au region the opposite was true. On the basis of the current literature it would appear that the main factors contributing to these sex differences in recombination are the modifiers which are different in the genetic background of the two sexes.


2005 ◽  
Vol 71 (1) ◽  
pp. 107-111
Author(s):  
Fathi B. Saidi

In this paper we adopt the notion of orthogonality in Banach spaces introduced by the author in [6]. There, the author showed that in any two-dimensional subspace F of E, every nonzero element admits at most one orthogonal direction. The problem of existence of such orthogonal direction was not addressed before. Our main purpose in this paper is the investigation of this problem in the case where E is a real Banach space. As a result we obtain a characterisation of Hilbert spaces stating that, if in every two-dimensional subspace F of E every nonzero element admits an orthogonal direction, then E is isometric to a Hilbert space. We conclude by presenting some open problems.


2016 ◽  
Vol 3 (1) ◽  
Author(s):  
Nicola Arcozzi ◽  
Pavel Mozolyako ◽  
Karl-Mikael Perfekt ◽  
Stefan Richter ◽  
Giulia Sarfatti

AbstractWe study the reproducing kernel Hilbert space with kernel k


2008 ◽  
Vol 60 (5) ◽  
pp. 1001-1009 ◽  
Author(s):  
Yves de Cornulier ◽  
Romain Tessera ◽  
Alain Valette

AbstractOur main result is that a finitely generated nilpotent group has no isometric action on an infinite-dimensional Hilbert space with dense orbits. In contrast, we construct such an action with a finitely generated metabelian group.


2015 ◽  
Vol 25 (3) ◽  
pp. 379-385
Author(s):  
Sandip Chatterjee ◽  
Rathindranath Mukherjee

In this paper we introduce the invex programming problem in Hilbert space. The requisite theory has been established to characterize the solution of such class of problems.


2010 ◽  
Vol 7 (3) ◽  
pp. 1282-1287
Author(s):  
Baghdad Science Journal

In this paper, we introduce a class of operators on a Hilbert space namely quasi-posinormal operators that contain properly the classes of normal operator, hyponormal operators, M–hyponormal operators, dominant operators and posinormal operators . We study some basic properties of these operators .Also we are looking at the relationship between invertibility operator and quasi-posinormal operator .


Mathematica ◽  
2021 ◽  
Vol 63 (86) (1) ◽  
pp. 47-57
Author(s):  
Daraby Bayaz ◽  
Delzendeh Fataneh ◽  
Rahimi Asghar

We investigate Parseval's equality and define the fuzzy frame on Felbin fuzzy Hilbert spaces. We prove that C(Omega) (the vector space of all continuous functions on Omega) is normable in a Felbin fuzzy Hilbert space and so defining fuzzy frame on C(Omega) is possible. The consequences for the category of fuzzy frames in Felbin fuzzy Hilbert spaces are wider than for the category of the frames in the classical Hilbert spaces.


Sign in / Sign up

Export Citation Format

Share Document