Structure–activity relationships of furanones, dihydropyrrolones and thiophenones as potential quorum sensing inhibitors

2020 ◽  
Vol 12 (21) ◽  
pp. 1925-1943
Author(s):  
Thérèse Lyons ◽  
Cormac GM Gahan ◽  
Timothy P O'Sullivan

Since their initial isolation from the marine alga Delisea pulchra, bromofuranones have been investigated as potential inhibitors of quorum sensing (QS) in various bacterial strains. QS is an important mechanism by which bacteria co-ordinate their molecular response to the environment. QS is intrinsically linked to bacterial antibiotic resistance. Inspired by nature, chemists have developed a wide variety of synthetic analogs in an effort to elucidate the structure–activity relationships of these compounds, and to ultimately develop novel antimicrobial agents. In this work, we describe advances in this field while paying particular attention to apparent structure–activity relationships. This review is organized according to the main ring systems under investigation, namely furanones, dihydropyrrolones and thiophenones.

ChemMedChem ◽  
2016 ◽  
Vol 11 (22) ◽  
pp. 2522-2533 ◽  
Author(s):  
Andreas Thomann ◽  
Christian Brengel ◽  
Carsten Börger ◽  
Dagmar Kail ◽  
Anke Steinbach ◽  
...  

2011 ◽  
Vol 76 (12) ◽  
pp. 1597-1606 ◽  
Author(s):  
Nemanja Trisovic ◽  
Bojan Bozic ◽  
Ana Obradovic ◽  
Olgica Stefanovic ◽  
Snezana Markovic ◽  
...  

A series of twelve 3-substituted-5,5-diphenylhydantoins was synthesized, including some whose anticonvulsant activities have already been reported in the literature. Their antiproliferative activities against HCT-116 human colon carcinoma cells were evaluated to determine structure-activity relationships. Almost all of the compounds exhibited statistically significant antiproliferative effects at a concentration of 100 ?M, while the derivative bearing a benzyl group was active even at lower concentrations. Moreover, their in vitro antibacterial activities against Escherichia coli ATCC 25922, Staphylococcus aureus ATCC 25923 and clinical isolates of Escherichia coli, Proteus mirabilis, Pseudomonas aeruginosa, Enterococcus faecalis and Staphylococcus aureus were evaluated. Only the 3-iso-propyl and 3-benzyl derivatives showed weak antibacterial activities against the Gram-positive bacterium E. faecalis and the Gram-negative bacteria E. coli ATCC 25922 and E. coli.


Molecules ◽  
2016 ◽  
Vol 21 (8) ◽  
pp. 971 ◽  
Author(s):  
Stephanie Forschner-Dancause ◽  
Emily Poulin ◽  
Susan Meschwitz

2011 ◽  
Vol 19 (24) ◽  
pp. 7711-7719 ◽  
Author(s):  
M. Vijaya Bhaskar Reddy ◽  
Wei-Jern Tsai ◽  
Keduo Qian ◽  
Kuo-Hsiung Lee ◽  
Tian-Shung Wu

2006 ◽  
Vol 50 (10) ◽  
pp. 3435-3443 ◽  
Author(s):  
Tammy M. Joska ◽  
Amy C. Anderson

ABSTRACT New and improved therapeutics are needed for Bacillus anthracis, the etiological agent of anthrax. To date, antimicrobial agents have not been developed against the well-validated target dihydrofolate reductase (DHFR). In order to address whether DHFR inhibitors could have potential use as clinical agents against Bacillus, 27 compounds were screened against this enzyme from Bacillus cereus, which is identical to the enzyme from B. anthracis at the active site. Several 2,4-diamino-5-deazapteridine compounds exhibit submicromolar 50% inhibitory concentrations (IC50s). Four of the inhibitors displaying potency in vitro were tested in vivo and showed a marked growth inhibition of B. cereus; the most potent of these has MIC50 and minimum bactericidal concentrations at which 50% are killed of 1.6 μg/ml and 0.09 μg/ml, respectively. In order to illustrate structure-activity relationships for the classes of inhibitors tested, each of the 27 inhibitors was docked into homology models of the B. cereus and B. anthracis DHFR proteins, allowing the development of a rationale for the inhibition profiles. A combination of favorable interactions with the diaminopyrimidine and substituted phenyl rings explains the low IC50 values of potent inhibitors; steric interactions explain higher IC50 values. These experiments show that DHFR is a reasonable antimicrobial target for Bacillus anthracis and that there is a class of inhibitors that possess sufficient potency and antibacterial activity to suggest further development.


Antibiotics ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 406
Author(s):  
John A. Karas ◽  
Labell J. M. Wong ◽  
Olivia K. A. Paulin ◽  
Amna C. Mazeh ◽  
Maytham H. Hussein ◽  
...  

A post-antibiotic world is fast becoming a reality, given the rapid emergence of pathogens that are resistant to current drugs. Therefore, there is an urgent need to discover new classes of potent antimicrobial agents with novel modes of action. Cannabis sativa is an herbaceous plant that has been used for millennia for medicinal and recreational purposes. Its bioactivity is largely due to a class of compounds known as cannabinoids. Recently, these natural products and their analogs have been screened for their antimicrobial properties, in the quest to discover new anti-infective agents. This paper seeks to review the research to date on cannabinoids in this context, including an analysis of structure–activity relationships. It is hoped that it will stimulate further interest in this important issue.


2016 ◽  
Vol 59 (11) ◽  
pp. 5432-5448 ◽  
Author(s):  
Javier Sánchez-Céspedes ◽  
Pablo Martínez-Aguado ◽  
Margarita Vega-Holm ◽  
Ana Serna-Gallego ◽  
José Ignacio Candela ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document