The impact and mechanism of ampakine CX1739 on protection against respiratory depression in rats

2020 ◽  
Vol 12 (23) ◽  
pp. 2093-2104
Author(s):  
Dian Xiao ◽  
Fei Xie ◽  
Xin Xu ◽  
Xinbo Zhou

Background: Abuse of analgesic and sedative drugs often leads to severe respiratory depression and sometimes death. Approximately 69,000 people worldwide die annually from opioid overdoses. Purpose: This work aimed to investigate whether CX1739 can be used for emergency treatment of acute respiratory depression due to drug abuse. Results: First, the results clarify that CX1739 is a low-impact ampakine that can safely activate α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors without causing excito-neurotoxicity. Second, CX1739 rapidly crossed the blood–brain barrier (Tmax = 2 min), which meets the requirement of rapid onset of action in vivo. Our work provides preliminarily confirmation that high-dose intravenous administration of CX1739 can immediately reverse respiratory depression in animal models of respiratory depression caused by opioid agonist 030418, pentobarbital sodium and ethanol.

Blood ◽  
2006 ◽  
Vol 107 (6) ◽  
pp. 2409-2414 ◽  
Author(s):  
Mojgan Ahmadzadeh ◽  
Steven A. Rosenberg

Abstract Interleukin-2 (IL-2) is historically known as a T-cell growth factor. Accumulating evidence from knockout mice suggests that IL-2 is crucial for the homeostasis and function of CD4+CD25+ regulatory T cells in vivo. However, the impact of administered IL-2 in an immune intact host has not been studied in rodents or humans. Here, we studied the impact of IL-2 administration on the frequency and function of human CD4+CD25hi T cells in immune intact patients with melanoma or renal cancer. We found that the frequency of CD4+CD25hi T cells was significantly increased after IL-2 treatment, and these cells expressed phenotypic markers associated with regulatory T cells. In addition, both transcript and protein levels of Foxp3, a transcription factor exclusively expressed on regulatory T cells, were consistently increased in CD4 T cells following IL-2 treatment. Functional analysis of the increased number of CD4+CD25hi T cells revealed that this population exhibited potent suppressive activity in vitro. Collectively, our results demonstrate that administration of high-dose IL-2 increased the frequency of circulating CD4+CD25hi Foxp3+ regulatory T cells. Our findings suggest that selective inhibition of IL-2-mediated enhancement of regulatory T cells may improve the therapeutic effectiveness of IL-2 administration. (Blood. 2006;107:2409-2414)


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 3254-3254
Author(s):  
Francesco Mazziotta ◽  
Gabriele Buda ◽  
Nadia Cecconi ◽  
Giulia Cervetti ◽  
Lorenzo Iovino ◽  
...  

INTRODUCTION Multiple myeloma (MM) is considered an incurable disease. Despite the introduction of novel agents allowed deeper response, high-dose chemotherapy and autologous stem cell transplantation (ASCT) remain the standard of care for patients (pts) in good clinical conditions. The most used strategies to mobilize stem cells from bone marrow (BM) into peripheral blood are high-dose cyclophosphamide (HD-CTX) plus G-CSF and G-CSF plus plerixafor (G-CSF+P). The goal of this retrospective study is to investigate whether the two different mobilization strategies have an impact on the clearance of monoclonal PCs in the apheresis products and on pts' outcome. PATIENTS AND METHODS We analyzed 62 pts (median age 61, range 41-75, 37 males and 25 women) diagnosed with MM and treated with ASCT between Mar 2014 and Mar 2018 at our Hematology Division (Pisa, Italy). All pts received induction therapy with at least 4 cycles of bortezomib, thalidomide and dexamethasone (VTD). 9/62 pts obtained a less than partial response (PR) and received lenalidomide-based regimens. After induction, 8 (12,9%) pts achieved complete remission (CR), 26 (41,9%) were in PR, 28 (45,2%) obtained a very good partial response (VGPR). 43/62 fit pts received HD-CTX (2-3 g/sqm) on day 1 followed by G-CSF (30 MU/day) started on day 4 until day 7, increased to 60 MU/day from day 8 until the end of apheresis. In 19/62 pts, after 4 days of G-CSF (60 MU/day) administration and not sufficient mobilization, we added plerixafor (0,24 mg/kgbw) for up to 4 consecutive days. In 43/62 pts we collected apheresis samples (10μl) analyzed through flow citometry to enumerate clonal residual PCs. The panel used to asses clonality included: CD138 Per-Cp, CD38 APC, CD19 PE-Cy7, CD45 APC-Cy7, cytoplasmic immunoglobulin K chain and L chain. RESULTS At the end of the peripheral blood stem cell (PBSC) collection, pts treated with HD-CTX presented a higher CD34+ absolute count (p=0.0489) and achieved the threshold of 5x106 CD34+ cells/kgbw in a significantly (p=0.006) higher percentage. We found a nearly significant (p=0.0517) lower count of CD34+ PBSCs in pts who received lenalidomide-based regimens before the mobilization. Performing flow citometry on apheresis samples, we observed that the number of the harvested clonal PCs showed a significant correlation (p=0.0115) with the occurrence of post-ASCT relapse. ROC curve analysis investigating the predictive effect of the number of pathological PCs on disease relapse showed an area under the curve of 0,6978 (95% CI 0.5392-0.8564; p=0.0267). Neither BM residual PCs detectable on BM biopsies performed before apheresis (r=-0.1323; p=0.609) nor the type of mobilization scheme (p=0.707) had an impact on the proportion of clonal PCs in the graft. Additionally, we did not observe any statistically significant difference in progression free- (PFS) (p=0.8276) and overall survival (OS) (p=0.2475) between the HD-CTX and G-CSF+P groups. DISCUSSION PBSC mobilization has a succession rate > 85%. Despite the use of HD-CTX to increase PBSC yields and decrease tumor burden, there is not clear evidence of a superior mobilization strategy. Additionally, HD-CTX has a not negligible toxicity and approximately 10% of the pts require hospitalization. Conversely, G-CSF+P is a safe and effective approach also in poor mobilizers. In our study, we observed a significative difference in the apheresis yields (p=0.0489) and in the percentage of pts who achieved the threshold of 5x106 CD34+ cells/kgbw (p=0.006) in favor of HD-CTX. Additionally, the detection of harvested residual clonal PCs could be a promising strategy to recognise pts more likely to relapse after ASCT. Nonetheless, we failed to demonstrate a superior effect of HD-CTX in the clearance of harvested clonal PCs, in agreement with the absence of a different pts' outcome amongst the two mobilization strategies. In conclusion, the choice between the two regimens is challenging and requires careful consideration of multiple factors. Overall, young fit pts, especially in the high-risk setting, should be treated with all appropriate modalities including chemiomobilization followed by double-ASCT. Conversely, in pts candidate to a single-ASCT it is reasonable to use G-CSF+P, since HD-CTX does not improve PFS and OS and add toxicity. The absence of an in-vivo purging effect on apheresis products of chemiomobilization further strengthens a chemotherapy-free mobilization. Disclosures Galimberti: Roche: Speakers Bureau; Celgene: Speakers Bureau; Novartis: Speakers Bureau.


2009 ◽  
Vol 297 (3) ◽  
pp. E767-E773 ◽  
Author(s):  
Susan A. Phillips ◽  
Jacqueline Kung ◽  
Theodore P. Ciaraldi ◽  
Charles Choe ◽  
Louis Christiansen ◽  
...  

Adiponectin, an insulin-sensitizing factor secreted from adipose tissue, is decreased in individuals with type 2 diabetes (T2D) and increased in response to thiazolidinedione (TZD) therapy. Changes in its secretion and assembly into higher-order forms affect insulin sensitivity. To determine the relative potency of TZDs on intra-adipocyte multimerization and secretion of adiponectin, we assessed the impact of in vivo low- or high-dose rosiglitazone treatment alone or combined with metformin in subjects with T2D. T2D subjects received high-dose rosiglitazone (8 mg/day), high-dose metformin (2,000 mg/day), or low-dose combination rosiglitazone-metformin therapy (4 mg + 1,000 mg/day) for 4 mo. All subjects were then switched to high-dose rosiglitazone-metformin combination therapy (8 mg + 2,000 mg/day) for another 4 mo. Low-dose rosiglitazone increased serum adiponectin, whereas the high dose increased both adipocyte content and serum adiponectin levels. TZDs selectively increased the percentage of circulating adiponectin in the potent, high-molecular-weight (HMW) form. No TZD effects were evident on multimer distribution in the cell. Expression of the chaperone protein ERp44, which retains adiponectin within the cell, was decreased by TZD treatment. No changes occurred in Ero1-Lα expression. Metformin had no effect on any of these measures. Increases in adiponectin correlated with improvements in insulin sensitivity. In vivo, TZDs have apparent dose-dependent effects on cellular and secreted adiponectin. TZD-mediated improvements in whole body insulin sensitivity are associated with increases in circulating but not cellular levels of the HMW adiponectin multimer. Finally, TZDs promote the selective secretion of HMW adiponectin, potentially, in part, through decreasing the expression of the adiponectin-retaining protein ERp44.


2021 ◽  
Author(s):  
Yihan Yan ◽  
Lorenzo Travaglini ◽  
Kieran Lau ◽  
Jelena Rnjak-Kovacina ◽  
Minoo Eslami ◽  
...  

ABSTRACTTranslation into the clinic of organic bioelectronic devices having conjugated polymers as the active material will hinge on their long-term operation in vivo. This will require the device to be subject to clinically approved sterilization techniques without a deterioration in its physical and electronic properties. To date, there remains a gap in the literature addressing the impact of this critical pre-operative procedure on the properties of conjugated polymers. This study aims to address this gap by assessing the physical and electronic properties of a sterilized porous bioelectronic patch having polyaniline as the conjugated polymer. The patch was sterilized by autoclave, ethylene oxide and gamma (γ-) irradiation at 15, 25, and 50 kGy doses. Autoclaving resulted in cracking and macroscopic degradation of the patch, while patches sterilized by γ-irradiation at 50 kGy exhibited reduced mechanical and electronic properties, attributed to chain scission and non-uniform crosslinking caused by the high dose irradiation. Ethylene oxide and γ-irradiation at 15 and 25 kGy sterilization appeared to be the most effective at maintaining the mechanical and electronic properties of the patch, as well as inducing a minimal immune response as revealed by a receding fibrotic capsule after 4 weeks implantation. Our findings pave the way towards closing the gap for the translation of organic bioelectronic devices from acute to long-term in vivo models.


1977 ◽  
Vol 5 (6) ◽  
pp. 99-104 ◽  
Author(s):  
G Beaumont ◽  
G I J Rigby ◽  
J Seldrup

A number of characteristics of an ideal antacid are proposed. A new antacid formulation, Andursil, has been assessed both by in vitro and in vivo methods. Andursil has been found to compare favourably in its properties, with the profile of the ideal antacid. In a multicentre general practitioner trial it was found to be effective in relieving the symptoms of dyspepsia, to have a rapid onset of action and a satisfactory duration of effect, to be palatable and to be relatively free from undesirable effects.


2020 ◽  
pp. AAC.01707-20
Author(s):  
Yongliang Fang ◽  
Jack R. Kirsch ◽  
Liang Li ◽  
Seth A. Brooks ◽  
Spencer Heim ◽  
...  

There is an urgent need for novel agents to treat drug-resistant bacterial infections, such as multidrug-resistant Staphylococcus aureus (MRSA). Desirable properties for new antibiotics include high potency, narrow species selectivity, low propensity to elicit new resistance phenotypes, and synergy with standard of care (SOC) chemotherapies. Here, we describe analysis of the anti-MRSA potential exhibited by F12, an innovative anti-MRSA lysin that has been genetically engineered to evade detrimental antidrug immune responses in human patients. F12 possesses high potency and rapid onset of action, it has narrow selectivity against pathogenic Staphylococci, and it manifests synergy with numerous SOC antibiotics. Additionally, resistance to F12 and β-lactam antibiotics appears mutually exclusive, and importantly we provide evidence that F12 re-sensitizes normally resistant MRSA strains to β-lactams both in vitro and in vivo. These results suggest that combinations of F12 and SOC antibiotics could be a promising new approach to treating refractory S. aureus infections.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 870
Author(s):  
Amer S. AlAli ◽  
Mohammed F. Aldawsari ◽  
Ahmed Alalaiwe ◽  
Bjad K. Almutairy ◽  
Ramadan Al-Shdefat ◽  
...  

Sildenafil citrate undergoes first-pass metabolism, resulting in poor oral bioavailability at 25–41% of the administered dose. This study aimed to design and optimize fast-disintegrating tablets for the sublingual delivery of sildenafil citrate to improve bioavailability and facilitate rapid onset of action. The design-of-experiment (DoE) approach using 32 full factorial design was conducted to develop a new formulation of sildenafil fast-disintegrating sublingual tablets (FDSTs) using the fluid-bed granulation technique. The levels of partially pre-gelatinized starch (5–15%) and microcrystalline cellulose (10–60%) were selected as independent formulation variables. The prepared FDSTs were investigated for physical properties. Further, the optimum formulation was chosen for in vivo study in rabbits. Regression analysis showed that independent variables have a significant (p < 0.05) influence on critical attributes of FDSTs. The optimized formulation showed acceptable mechanical strength (friability <1.0%) with very fast disintegration (14.561 ± 0.84 s) and dissolution (94.734 ± 2.76% after 15 min). Further, the optimized formulation demonstrated a significant increase (p < 0.01) in Cmax and AUC0–∞ with short tmax compared to the market product (Viagra®). Based on these results, using the DoE approach, a high level of assurance was achieved for FDSTs’ product quality and performance.


2022 ◽  
Vol 9 (3) ◽  
pp. 3-7
Author(s):  
Uma Advani ◽  
Ravi Prakash ◽  
Parmanand Swami ◽  
Neha Sharma ◽  
Charu Jain ◽  
...  

Abstract Objective: To review the literature on equianalgesic efficacy and better safety(less respiratory depression and gastrointestinal dysfunction) of oliceridine versus opioid analgesic in moderate to severe postoperative pain. Methodology: A comprehensive literature search was conducted in PubMed (January 2021 to March 2021) using keywords as ‘oliceridine’, ‘ligand biased mu receptor agonist’, ‘acute postoperative pain’, ‘conventional opioids’ and ‘morphine’. All English language full text pre-clinical and clinical research articles were searched. In addition, other data source was from ClinicalTrial. Gov. Data Synthesis: Oliceridine is a novel selective µ (mu)-receptor G-protein pathway modulator. G protein biased mu receptor agonists are a new class of opioids exhibiting analgesic properties at par to morphine with less respiratory depressant properties. Oliceridine a first-in-class intravenous (IV) analgesic has received the US FDA approval in August 2020, for management of moderate to severe acute pain in adults. The drug can be administered in cases where the pain is severe enough to require an intravenous opioid and when alternative treatments become inadequate. Oliceridine is an opioid agonist with a rapid onset of action within two to five minutes, was administered via clinician-administered bolus dosing, patient-controlled analgesia (PCA), or a combination of the two. Bolus dosing was initiated at 1 to 2 mg, with supplemental doses of 1 to 3 mg every one to three hours, as needed, based on individual patient need and previous response to oliceridine in management of acute post-operative pain. If oliceridine was administered via PCA, the loading dose was 1.5 mg, the demand dose was 0.5 mg, and the lockout interval (repeat dose)was six minutes. The clinically relevant concentration range of 0 to 35 ng/ml. It is indicated for short-term use only & limited to hospitals or other controlled clinical settings. Oliceridine requires no dosage adjustments in patients with renal impairment as well as in patient with significant medical complications. Therefore, opioids that bias towards G-protein and away from β arrestin signaling should produce analgesia with reduced side effects.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 3425-3425
Author(s):  
Taha Bat ◽  
Susan F. Leitman ◽  
Katherine R Calvo ◽  
Donna Chauvet ◽  
Cynthia E. Dunbar

Abstract Abstract 3425 Background The ability to distinguish increased platelet destruction from platelet hypo-production is important in the care of patients with bone marrow failure syndromes and patients receiving high dose chemotherapy. The measurement of immature circulating platelets based on RNA content using an automated counter is now feasible. This study evaluated the impact of recent platelet transfusion on measurement of immature platelet parameters. Study Design and Methods The immature platelet fraction (IPF) and absolute immature platelet number (AIPN) were measured using the Sysmex XE-5000 analyzer prior to and following platelet transfusion in 9 transfusion-dependent patients with marrow failure secondary to aplastic anemia, myelodysplasia or transplantation conditioning. IPF and AIPN were also measured serially over 5 days of storage in 3 plateletpheresis components collected from normal donors. Results Platelet transfusion did not significantly change the mean AIPN in transfused patients. In contrast, IPF decreased significantly from 6.6 ±4.6% at day -1 to 2.3 ±1.4% at day 0 before returning to 4.3 ±2.3% at day +1. In the platelet component, AIPN and IPF% increased significantly over 5 days of storage, most likely due to an artifact of the staining and detection process for stored platelets, no longer detected in vivo once the platelets were transfused. Conclusion Platelet transfusion decreases the IPF due to the resultant increase in circulating platelet count. However, platelet transfusion does not change the circulating absolute immature platelet number (AIPN), validating this assay as a reflection of ongoing platelet production by the bone marrow in various clinical settings, regardless of proximity to platelet transfusion. Disclosures: No relevant conflicts of interest to declare.


2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi171-vi171
Author(s):  
Hunter Bomba ◽  
Lauren Kass ◽  
Kevin Sheets ◽  
Abigail Carey-Ewend ◽  
Morgan Goetz ◽  
...  

Abstract BACKGROUND Induced neural stem cells (iNSCs) have emerged as a promising therapeutic platform for glioblastoma (GBM). iNSCs have the innate ability to home to tumor foci, making them ideal carriers for anti-tumor payloads. However, iNSC persist for only two weeks in the murine GBM tumor resection cavity. We hypothesized that by encapsulating iNSCs in a scaffold matrix, we could increase both the persistence of the cells the therapeutic durability. METHODS iNSCs expressing TRAIL were encapsulated in a gelatin-thrombin matrix; fibrinogen was used to polymerize the matrix. SEM was used to explore interactions between iNSCs and the scaffold matrix. To evaluate persistence, iNSCs encapsulated in the matrix were implanted into mock resection cavities of athymic nude mice and followed via BLI. To study the impacts of encapsulation on iNSC efficacy, athymic nude mice were implanted with U87 or GBM8 tumors. Tumors were then resected, and iNSCs encapsulated in the matrix were implanted; tumor volume was monitored via BLI. RESULTS SEM images showed homogeneous distribution of iNSCs throughout the matrix; iNSCs were completed encased in the fibrin clot component of the matrix and did not adhere to gelatin. In vivo, encapsulated iNSCs persisted for nearly 100 days whereas iNSCs directly injected into the brain parenchyma persisted &lt; 20 days. Using mice bearing GBM8 tumors, animals treated with a high dose of therapeutic encapsulated iNSCs survived ~60 days longer than animals treated with non-therapeutic cells. A similar trend was observed in animals inoculated with U87 tumors. While not statistically significant, 25% of mice treated with iNSCs encapsulated in the gelatin-thrombin matrix survived longer than those treated with iNSCs encapsulated in a fibrin-only matrix, suggesting additional benefit due to the gelatin component. FUTURE DIRECTIONS: Prospective experiments will explore the impact of the scaffold on iNSC phenotype, including proliferation, differentiation, and migration markers.


Sign in / Sign up

Export Citation Format

Share Document