scholarly journals Caveolin-1 promotes pancreatic cancer cell differentiation and restores membranous E-cadherin via suppression of the epithelial-mesenchymal transition

Cell Cycle ◽  
2011 ◽  
Vol 10 (21) ◽  
pp. 3692-3700 ◽  
Author(s):  
Ahmed F. Salem ◽  
Gloria Bonuccelli ◽  
Generoso Bevilacqua ◽  
Hwyda Arafat ◽  
Richard G. Pestell ◽  
...  
2020 ◽  
Vol 7 ◽  
Author(s):  
Yong Zeng ◽  
Min Zou ◽  
Yan Liu ◽  
Keting Que ◽  
Yunbing Wang ◽  
...  

Keratin 17 (K17), a member of type I acidic epithelial keratin family, has been reported to be upregulated in many malignant tumors and to be involved in promoting the development of tumors. However, the precise role of K17 in progression of pancreatic cancer is still unknown. In this study, we found that K17 expression was highly expressed in pancreatic cancer tissues and cell lines and that upregulated expression was associated with the pathological grade and poor prognosis. K17 expression served as an independent predictor of pancreatic cancer survival. Meanwhile, we showed that knocking down K17 induced pancreatic cancer cell proliferation, colony formation and tumor growth in xenografts in mice. However, K17 upregulation inhibited pancreatic cancer cell proliferation and colony formation. Further mechanistic study revealed that K17 knockdown promoted cell cycle progression by upregulating CyclinD1 expression and repressed cell apoptosis. However, K17 upregulation suppressed cell cycle progression by decreasing CyclinD1 expression, and induced apoptosis by increasing the levels of cleaved Caspase3. In addition, K17 knockdown promoted pancreatic cancer cell migration and invasion, but K17 upregulation suppressed cell migration and invasion. Moreover, knocking down K17 promoted epithelial-mesenchymal transition (EMT) in pancreatic cancer cell by inhibiting E-cadherin expression and inducing Vimentin expression, and the effects of K17 upregulation were opposite to that of K17downregulation. Taken together, our findings suggest that K17 functions as a potential tumor suppressor, even though it is upregulated in pancreatic cancer.


Nutrients ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 1856 ◽  
Author(s):  
Wei ◽  
Penso ◽  
Hackman ◽  
Wang ◽  
Mackenzie

Most pancreatic cancers are usually diagnosed at an advanced stage when they have already metastasized. Epigallocatechin-3-gallate (EGCG), a major polyphenolic constituent of green tea, has been shown to reduce pancreatic cancer growth, but its effect on metastasis remains elusive. This study evaluated the capacity of EGCG to inhibit pancreatic cancer cell migration and invasion and the underlying mechanisms. EGCG reduced pancreatic cancer cell growth, migration, and invasion in vitro and in vivo. EGCG prevented “Cadherin switch” and decreased the expression level of TCF8/ZEB1, β-Catenin, and Vimentin. Mechanistically, EGCG inhibited the Akt pathway in a time-dependent manner, by suppressing IGFR phosphorylation and inducing Akt degradation. Co-treatment with catalase or N-Acetyl-L-cysteine did not abrogate EGCG’s effect on the Akt pathway or cell growth. Moreover, EGCG synergized with gemcitabine to suppress pancreatic cancer cell growth, migration, and invasion, through modulating epithelial–mesenchymal transition markers and inhibiting Akt pathway. In summary, EGCG may prove beneficial to improve gemcitabine sensitivity in inhibiting pancreatic cancer cell migration and invasion, to some extent through the inhibition of Akt pathway and epithelial–mesenchymal transition.


2020 ◽  
pp. jbc.RA120.015502
Author(s):  
Sasithorn Wanna-udom ◽  
Minoru Terashima ◽  
Kusuma Suphakhong ◽  
Akihiko Ishimura ◽  
Takahisa Takino ◽  
...  

Polycomb repressive complex-1 (PRC1) induces transcriptional repression by regulating mono-ubiquitination of lysine 119 of histone H2A (H2AK119), and as such is involved in a number of biological and pathological processes including cancer development. Previously we demonstrated that PRC2 which catalyzes the methylation of histone H3K27 has an essential function in TGF-β-induced epithelial-mesenchymal transition (EMT) of lung and pancreatic cancer cell lines. Since the cooperative activities of PRC1 and PRC2 are thought to be important for transcriptional repression in EMT program, we investigated the role of KDM2B, a member of PRC1 complex, on TGF-β-induced EMT in this study. Knockdown of KDM2B inhibited TGF-β-induced morphological conversion of the cells, and enhanced cell migration and invasion potentials as well as the expression changes of EMT-related marker genes. Overexpression of KDM2B influenced the expression of several epithelial marker genes such as CDH1, miR200a and CGN, and enhanced the effects of TGF-β. Mechanistic investigations revealed that KDM2B specifically recognized the regulatory regions of CDH1, miR200a and CGN genes and induced histone H2AK119 mono-ubiquitination as a component of PRC1 complex, thereby mediating the subsequent EZH2 recruitment and histone H3K27 methylation process required for gene repression. Studies using KDM2B mutants confirmed that its DNA recognition property but not its histone H3 demethylase activity was indispensable for its function during EMT. This study demonstrated the significance of the regulation of histone H2A ubiquitination in EMT process and provided the possibility to develop novel therapeutic strategies for the treatment of cancer metastasis.


Sign in / Sign up

Export Citation Format

Share Document